
2 Introduction to Quantum Codes (Week 2)

In this lecture, we will construct our first quantum error correcting code. We
will borrow a lot of terminology and conceptual ideas from the classical error-
correction literature. Therefore, we start by reviewing a basic classical error
correcting code, known as repetition code.

2.1 Repetition Code

In classical world, our data consists of bits b 2 {0, 1}. Suppose we wish to send a
bit from one location to another through a noisy classical channel. The e↵ect of
noise in the channel is to flip the bit being transmitted with probability p > 0.
To deal with this noise, we encode bit b by adding redundant bits.

Definition 2.1 (Repetition Code). Repetition code encodes b 2 {0, 1} into 3
bits.

0 ! 000

1 ! 111

The bit strings 000 and 111 are referred to as codewords, and also sometimes
referred to as the logical 0 and logical 1, since they play the role of 0 and 1
respectively.

We now send all three bits 000 through the channel. Suppose our codeword
experiences a single bit flip error, and the output of the channel is 010:

000
noise
���! 010

We can correct this bit flip by looking at the majority of the three bits. Since,
only one bit has been flipped, this will give us the correct value for the three
bits:

000
noise
���! 010

majority

�����! 000

On the other hand, if there were 2 or more bit flips, this scheme would fail

000
lots of noise
�������! 011

majority

�����! 111 6= 000

Hence, the 3-bit repetition code allows us to correct one bit flip error, and fails
to correct 2 or more bit flips. This means we could use repetition code to get
reliability in channels where error probability p is small. These channels mostly
see at most 1 bit flip error, since the probability of seeing 2 or more bit flip
errors scales as O(p2).

2.2 Quantum Noise

Classically, bit-flip is the only possible type of noise. But a quantum state is
susceptible to many more types of noise. Let’s look at few examples of quantum
error.
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Definition 2.2 (Bit flip error). A bit flip error is described by the unitary

X =


0 1
1 0

�

which acts on the computational basis as

X |0i = |1i

X |1i = |0i

Definition 2.3 (Phase flip error). A phase flip error is described by the unitary

Z =


1 0
0 �1

�

which acts on the computational basis as

Z |0i = |0i

Z |1i = � |1i

Observation 2.4. Phase flip error acts like a bit flip error in the Hadamard
basis since Z = HXH. We check by direct computation.

Z |+i = Z
|0i+ |1i

p
2

=
|0i � |1i

p
2

= |�i

Z |�i = Z
|0i � |1i

p
2

=
|0i+ |1i

p
2

= |+i

In today’s lecture, we will consider a simiplified model of quantum noise
where only bit flip and phase flip errors can occur. We will see in the lec-
ture tomorrow that this is without loss of generality, because Pauli errors
{I,X, Z, Y = iXZ} form an orthogonal basis for the Hilbert space of all 2 ⇥ 2
Hermitian matrices. This means, if a quantum code corrects for Pauli errors1,
it can correct arbitrary errors for free.

2.3 Fixing bit flip errors

We now describe a 3-qubit quantum code that protects against bit flip errors.
This was first investigated by Asher Peres in 1985.

Definition 2.5 (3-qubit bit flip code). We define the code on the standard basis,
and then extend via linearity.

|0i ! |000i

|1i ! |111i

| i = a |0i+ b |1i ! a |000i+ b |111i = | iL
1since Y error is just a phase flip error and a bit flip error, we actually only need to worry

about X and Z errors
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How do we implement this code? Since we can not clone quantum states, we
can not go from |0i to |000i. To implement this, we first add two ancilla qubits.
To familarize us with quantum circuits, here is a circuit which implements this
code:

| i •

|0i • | iL
|0i

9
>=
>;

The gate used above is a CNOT gate (Definition 1.5).
We encode | i = a |0i + b |1i, and send the qubits | iL = a |000i + b |111i

through the quantum channel. Now, suppose there is a bit flip error, say on the
second qubit.

(I ⌦X ⌦ I) · | iL = a |010i+ b |101i = | e iL

To detect a bit flip error, a natural strategy could be to measure the 3 qubits
in the standard basis. This measurement gives string 010 with probability |a|2,
and string 101 with probability |b|2. Using this, we can detect that a bit flip

error occurred. However, in the process, we have collapsed our state | e iL, and
therefore, we can not recover the original state.

The issue is that we have measured too much. We should try to measure
only “Has a bit flip error occurred, and on which qubits?” i.e. (1) Measure
parity of first and second qubits, and (2) Measure parity of second and third
qubits.

Both parities are 1 and 1, for both |010i and |101i, so measuring it does not

collapse the state. In other words, we perform the following circuit on | e iL.

Scribe Task: Draw a circuit which computes the parity of 1st and 2nd
qubit, and parity of 2nd and 3rd qubit. To begin, here is a circuit which
computes parity of 1st and 2nd qubit.

|xi •

|yi •

|0i |x+ y (mod 2)i
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The circuit acts on | e iL = a |010i+ b |101i as follows:

| e iL ⌦ |00i = a |010i ⌦ |00i+ b |101i ⌦ |00i

circuit computing

�����������!
parity on 2 ancilla

a |010i ⌦ |11i+ b |101i ⌦ |11i

= | e iL ⌦ |11i

By measuring the last two registers in computational basis (which gives the
measurement outcome 11), we can infer that the bit flip error occured on 2nd
qubit. The measurement outcome 11 is called syndrome, and it gives the re-
quired information about the error, i.e. in this case, a bit flip occured on the
second qubit. We can infer other errors from the syndrome as follow:

Syndrome Error
00 no error
01 bit flip on 3rd qubit
10 bit flip on 1rd qubit
11 bit flip on 2rd qubit

In our case, we can fix the error by applying second bit flip.

(I ⌦X ⌦ I) · | e iL = | iL

Note that this code can not fix two bit flip errors. Moreover, it can not fix
phase flip errors.

(Z ⌦ I ⌦ I) · | iL = (Z ⌦ I ⌦ I)(a |000i+ b |111i)

= a |000i � b |111i

We can not even detect this error because it is an encoding of state a |0i� b |1i.

Observation 2.6 (Measuring parity). Here is another interpretation for the
parity measurement. We can measure “parity of 1st and 2nd qubit” and “parity
of 2nd and 3rd qubit” by measurements of observables Z1Z2 and Z2Z3. Here the
notation ZiZj means Z gate applies on ith and jth qubit, and I on all remaining
qubits.

In our case, Z1Z2 has the spectral decomposition

Z1Z2 = (|00ih00|+ |11ih11|)⌦ I � (|01ih01|+ |10ih10|)⌦ I

Notice how the eigenvalues characterize the parity, and therefore, measuring
observable Z1Z2 on | e iL = a |010i + b |101i does not change the state, and
outputs �1 and identifies the syndrome.
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2.4 Fixing phase errors

We now describe a code which corrects phase flip errors. The main observation
to fix phase errors is that X and Z errors are switched by Hadamard transform

X = HZH

Definition 2.7 (3-qubit phase flip code). We define the code on the standard
basis, and then extend via linearity.

|0i ! |+++i

|1i ! |���i

| i = a |0i+ b |1i ! a |+++i+ b |���i = | iL

Let’s see what happens when there is a phase flip error, say on second qubit

Z2 | iL = a |+�+i+ b |�+�i = | e iL
Now, we can locate the error just like before, by first transforming to |0i , |1i

bases. The circuit acts on | e iL = a |+�+i+ b |�+�i as follows:

| e iL ⌦ |00i = a |+�+i ⌦ |00i+ b |�+�i ⌦ |00i

Hadamard on
��������!
first 3 qubits

a |010i ⌦ |00i+ b |101i ⌦ |00i

circuit computing

�����������!
parity on 2 ancilla

a |010i ⌦ |11i+ b |101i ⌦ |11i

Hadamard on
��������!
first 3 qubits

| e iL ⌦ |11i

In other words, the syndrome measurement can be performed by measuring the
observable H⌦3Z1Z2H⌦3 = X1X2 and H⌦3Z2Z3H⌦3 = X2X3. In our case, we
can fix the error by applying phase flip to the second qubit.

2.5 9-qubit Shor code

We now discuss a simple code, Shor’s 9-qubit code, which protects against ar-
bitrary single qubit errors! This code is an example of code concatenation:
a combination of 3-qubit bit flip code and 3-qubit phase flip code. We first
encode with phase flip code: |0i ! |+++i and |1i ! |���i, and then en-
code each of these qubits with bit flip code: |+i ! (|000i + |111i)/

p
2 and

|�i ! (|000i � |111i)/
p
2.

Definition 2.8 (9-qubit Shor code). We define the code on the standard basis,
and then extend via linearity.

|0i !

✓
|000i+ |111i

p
2

◆⌦3

def
= |0iL

|1i !

✓
|000i � |111i

p
2

◆⌦3

def
= |1iL

| i = a |0i+ b |1i ! a |0iL + b |1iL = | iL
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Now, suppose a bit flip error occurs on the second qubit of the first block

I ⌦X ⌦ I⌦7
| iL = (I ⌦X ⌦ I⌦7) · (a |0iL + b |1iL)

= a

✓
|010i+ |101i

p
2

◆
·

✓
|000i+ |111i

p
2

◆⌦2

+ b

✓
|010i � |101i

p
2

◆
·

✓
|000i � |111i

p
2

◆⌦2

= | e iL

We can now apply the circuit from bit flip detection on first 3 qubits to
identify the error. In other words, we measure Z1Z2 and Z2Z3, and in our case,
it will give measurement outcome 11.

Instead, if we had a phase flip error occur on the second qubit of the first
block

I ⌦ Z ⌦ I⌦7
| iL = (I ⌦X ⌦ I⌦7) · (a |0iL + b |1iL)

= a

✓
|000i � |111i

p
2

◆
·

✓
|000i+ |111i

p
2

◆⌦2

+ b

✓
|000i+ |111i

p
2

◆
·

✓
|000i � |111i

p
2

◆⌦2

= | e iL

To identify the phase flip error, we measureX1X2X3X4X5X6 andX4X5X6X7X8X9.
X1X2X3 looks at the first block and returns +1 for |000i + |111i and �1
for |000i � |111i. Similarly X4X5X6 acts on the second block and therefore,
X1X2X3X4X5X6 compares the sign of first two blocks and returns 1 if they are
same and �1 otherwise.
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