
Chapter 1

Basics of Reinforcement
Learning

In this chapter, we begin with motivating examples and then introduce the
mathematical framework used to model decision-making problems in reinforce-
ment learning. Let’s start with a few real-world scenarios that illustrate the
types of problems reinforcement learning aims to solve. These examples are
described informally, without invoking RL-specific terminology. Our goal is to
revisit them later and show how they can be modeled using the RL framework.

1.1 The Slot Machine Problem: Exploration vs
Exploitation.

Imagine walking into a casino and finding 3 slot machines lined up in front of
you. Each machine, when played, gives a random reward between 0 and 100.
The machines di↵er in how they are programmed — some machines may tend
to give higher rewards on average, while others may be worse.

Figure 1.1: An example of 3 slot machines. Some slot machines may give higher
rewards on average.

You only have time to play a total of 1000 times, across all the machines
combined, and your goal is to maximize the total reward you earn. This scenario
raises an important question: how should you decide which machines to play?

2

CHAPTER 1. BASICS OF REINFORCEMENT LEARNING 3

• On the one hand, you would like to explore the di↵erent machines, by
trying each of them enough times to estimate how good they are.

• On the other hand, you would also like to exploit your current knowledge
by repeatedly playing the machines that seem to o↵er the best rewards so
far.

Balancing this trade-o↵ between exploration (gathering information) and
exploitation (maximizing reward based on current knowledge) is one of the core
challenges in reinforcement learning.

1.2 Learning to Play Chess: Credit Assignment

Let’s consider another scenario. Suppose you are an AI agent learning how to
play chess against a human opponent. At each turn, the agent observes the
current state of the game — that is, the configuration of all pieces on the board
— and decides which move to make.

Figure 1.2: An example chess board configuration. The agent observes the state
of the board and decides on a move.

In principle, if the agent could determine the best move for every possible
board configuration, it would be able to play optimally. However, learning what
the best move is in each state is a highly challenging task for several reasons.

• First, the agent only receives feedback at the end of each game: it ei-
ther wins, loses, or draws. The consequence of individual moves is not
immediately known.

• Secondly, since chess involves rich strategic interactions between pieces, it
can be hard to determine which specific actions, or sequences of actions,
are responsible for this final outcome.

CHAPTER 1. BASICS OF REINFORCEMENT LEARNING 4

1.3 Reinforcement Learning Formulation

Both of the examples above, as well as many other real-world problems, can
be cast in the reinforcement learning (RL) framework. In this framework, we
model the interaction between two entities: The agent, which makes decisions
by observing its current situation and choosing actions. The environment,
which responds to the agent’s actions by providing feedback in the form of
rewards and updating the situation accordingly. The interaction proceeds as
follows:

Environment Agent

st+1, rt

at

Figure 1.3: Interaction loop between the agent and environment in reinforce-
ment learning. At each time step t, the agent observes the state st, takes an
action at, and receives a new state st+1 and reward rt.

1. The agent begins in some state representing the current situation.

2. Based on the observed state, the agent chooses an action from the set of
allowed actions.

3. The environment responds by:

• Providing the agent with a reward, which reflects the immediate qual-
ity of the chosen action in the current state.

• Updating the state, potentially in a stochastic (random) manner,
based on the agent’s action.

4. The agent observes the new state and repeats the process.

This sequence continues over a series of steps, often called an episode, which
may end after a fixed number of steps or upon reaching a special terminal
state. The goal of the agent is to learn a strategy that maximizes its expected
cumulative reward over time. We now formalize this setup mathematically.

CHAPTER 1. BASICS OF REINFORCEMENT LEARNING 5

1.4 Markov Decision Process

The standard framework for modeling reinforcement learning problems is the
Markov Decision Process (MDP). This framework captures the sequential nature
of decision-making under uncertainty.

Definition 1.1 (Markov Decision Process). A finite-horizon Markov De-
cision Process (MDP) is described by:

1. State space S: the set of all possible states.

2. Action space A: the set of all actions available to the agent.

3. Transition function T : S⇥A ! �(S)1: The transition function describes

the next state given the current state and the action chosen by the agent.

If the current state is s, and the agent takes action a, the next state s0 is
drawn from the distribution T (s, a).

4. Reward function R : S ⇥ A ! �([0, 1]): The reward function describes

the immediate reward given the current state and the action chosen by the

agent. If the current state is s, and the agent takes action a, then the

reward r is drawn from the distribution R(s, a).

5. Initial state s0 2 S: the starting state of each episode.

6. Horizon H 2 N: the number of time steps over which the agent interacts

with the environment in an episode, before restarting from initial state s0.

Remark 1.2. Instead of a fixed starting state s0, one can assume an initial

state distribution µ 2 �(S). This is a more general model, but assuming a fixed

starting state simplifies analysis and is without loss of generality: a random

initial state can be simulated by adding a dummy initial state and increasing the

horizon by 1.

We now formally define how an agent interacts with the environment in a
given MDP. The interaction follows the following protocol:

1. The agent starts in state s0.

2. For each time step t = 0, 1, . . . , H � 1

(a) The agent observes the state st

(b) The agent selects an action at 2 A based on its policy.

(c) The environment provides a reward rt ⇠ R(st, at).

(d) The environment transitions to the next state st+1 ⇠ T (st, at).
1Given any finite set K, define �(K) as the set of all probability distributions over K, i.e.,

�(K) := {p : K ! [0, 1] :
X

k2K

p(k) = 1}.

CHAPTER 1. BASICS OF REINFORCEMENT LEARNING 6

The decisions made by the agent are specified by a policy. Formally, a policy
is a function ⇡ : S ! �(A), where ⇡(s) is a distribution over actions given the
current state s. That is, at each time t, the agent samples action at ⇠ ⇡(st).

Definition 1.3 (Goal). The goal of the agent is to find a policy that maximizes

the expected cumulative reward over the horizon. In other words, the objective

is to solve the optimization problem:

max
⇡

ET,R,⇡

"
H�1X

t=0

rt

#
,

where the expectation is over the randomness in the transition function, reward

function, and the policy.

In reality (similar to standard PAC learning settings), we only expect to find
an approximate optimal policy with some constant probability.

1.5 Unrolling the MDP

In general, the transition function is stochastic, but to build intuition, it will also
be useful to consider deterministic transition function. When the transitions are
deterministic, we can visualize the unrolling of the MDP, into a tree (Figure 1.4).

Initial state
s0

s1
a3

s2
a2

s3

s4
a3

s5
a2

s6

a1

a1

Figure 1.4: Unrolling of an MDP with states S = {s0, s1, s2, . . . , s6} and actions
A = {a1, a2, a3}. Each node corresponds to some state s 2 S; edges correspond
to some action a 2 A, and transition to some state s0 2 S given by T (s, a). The
root of the tree is the initial state s0.

1.6 Value Functions

To reason about how good a policy is, we define two central objects in reinforce-
ment learning: the state value function and the state-action value function.

Definition 1.4 (Value Functions). Let ⇡ : S ! �(A) be a policy, and let H be

the horizon. For each time step h 2 {0, . . . , H � 1}, we define:

CHAPTER 1. BASICS OF REINFORCEMENT LEARNING 7

• The state value function V ⇡
h : S ! R as:

V ⇡
h (s) := E⇡,T,R

"
H�1X

t=h

rt

����� sh = s

#
,

i.e., the expected total reward collected from time h to H � 1, starting in

state s and following policy ⇡.

• The state-action value function Q⇡
h : S ⇥A ! R as:

Q⇡
h(s, a) := E⇡,T,R

"
H�1X

t=h

rt

����� sh = s, ah = a

#
,

i.e., the expected total reward obtained by taking action a in state s at time

h, and then following policy ⇡ until the end of the episode.

To simplify notation, we embed the time step h into the state (e.g., by
replacing s with the pair (s, h)), and will often use V ⇡(s) and Q⇡(s, a) to denote
the value functions. We use V ⇤ and Q⇤ to denote the value functions V ⇤(s) =
max⇡ V ⇡(s) and Q⇤(s, a) = max⇡ Q⇡(s, a) and refer to the corresponding policy
as the optimal policy ⇡⇤2.

2even though optimal policy ⇡⇤ is not unique, V ⇤(s) and Q⇤(s, a) defined as max⇡ V ⇡(s)
and max⇡ Q⇡(s, a) are unique.

