Chapter 2

Policy Gradient Methods

Recall that the goal of reinforcement learning is to solve the following optimiza-
tion problem:

H—1
max V™ (sg) := max Ep g » E el
™ ™ ’

t=0

where sq is a fixed initial state. Policy gradient methods approach this problem
by iteratively improving the policy using local gradient-based updates.

V™ (s0)

Policy Paramgter

Figure 2.1: Gradient ascent step improves the policy value V7 (sp).

Suppose we have a policy m with value V™ (sp). Unless 7 is optimal, there
always exists a small perturbation of the policy that leads to a higher expected
return. Specifically, for a small change in policy from 7 to 7/, we can approxi-
mate the change in value as:

V™ (s0) & V7 (s0) + VAV (s0) - (n' —),

CHAPTER 2. POLICY GRADIENT METHODS 9

where V V™ (s¢) is the gradient of the value function with respect to the policy
parameters. This suggests that we can improve the policy by moving in the
direction of the gradient:

7' =7+aV.V"(s0),

where o > 0 is a learning rate. This update rule is the foundation of policy
gradient methods, which directly optimize the expected return by estimating
and following the gradient (see Figure 2.1 for an illustration).

In the rest of this chapter, we introduce a simple gradient-based algorithm,
and implement it to solve two environments: CartPole and Pong.

2.1 Environments: CartPole and Pong

In this chapter, we focus on implementing policy gradient methods to solve
two benchmark environments in reinforcement learning: CartPole and Pong.
These environments differ in terms of state representation, action space, and the
challenges they present for learning-based algorithms. We begin by introducing
each environment in detail.

2.1.1 CartPole Environment

The CartPole environment is a classic control problem where the objective is to
prevent a pole, hinged on a cart, from falling over. The agent can apply a force
of fixed magnitude to the left or right of the cart to balance the pole.

Figure 2.2: Screenshot of the CartPole environment. The agent applies left /right
forces to the cart to keep the pole balanced.
e Observation space: A 4-dimensional continuous vector:
obs = (cart position, cart velocity, pole angle, pole angular velocity)

The observation limits are summarized in the table below:

CHAPTER 2. POLICY GRADIENT METHODS 10

Num | Observation Min Max
0 Cart Position —4.8 4.8
1 Cart Velocity —00 00
2 Pole Angle ~ —0.418 rad (—24°) | ~ 0.418 rad (24°)
3 Pole Angular Velocity —00 00

e Action space: A discrete set {0,1}, where 0 represents pushing the cart
to the left, and 1 to the right.

e Reward: The agent receives a reward of +1 for every timestep that the
pole remains upright.

e Episode termination: An episode ends when the pole angle exceeds
424° or the cart moves beyond +4.8 units from the center or 500 timesteps.

We use the implementation available in the Gymnasium library [1] under
the environment name CartPole-vl1.

2.1.2 Pong Environment

Pong is a visually rich environment based on the Atari 2600 game. The agent
controls a paddle and aims to win a game of Pong against a built-in opponent.
The objective of the game is to keep deflecting the ball away from your goal
and into the opponent’s goal.

Figure 2.3: Frame from the Pong environment. Green paddle is the agent,
orange is the opponent.

e Observation space: An RGB image of shape (210, 160, 3) representing
the full screen.

CHAPTER 2. POLICY GRADIENT METHODS 11

e Action space: A discrete set of 6 actions, of which we restrict to 3
meaningful ones: NOOP, UP, and DOWN.

e Reward: +1 when the agent scores a point, -1 when the agent loses a
point, and 0 otherwise.

e Episode termination: A game ends when one of the players reaches 21
points.

We use the implementation from the ALE (Arcade Learning Environment)
interface in Gymnasium [2], under the environment name ALE/Pong-v5.

2.2 Vanilla Policy Gradient Algorithm

In this section, we describe how to solve CartPole and Pong using the policy
gradient algorithm with a linear policy. We first formalize the policy represen-
tation, then present the algorithm and explain the gradient derivation used to
update the policy parameters.

2.2.1 Policy Parameterization

Let the state space be S C R? and the action space be finite, A = {1,2,..., K},
where d is the dimension of the observation vector and K = |A] is the number
of discrete actions. For CartPole and Pong, (d, K) are (4,2) and (210%160%3 =
100800, 3) respectively. We define a policy mg : S — A(A) using a softmax
function over a linear function of the state:

exp({0q,s))
wea exp((far,5))’
where 0 = (01, ...,0k) is a matrix in RE*? and 6, € R? is the parameter

vector associated with action a. The policy assigns a probability distribution
over actions based on the current state.

mo(a] s) = 5

2.2.2 Algorithm

Our goal is to find a policy 7 that maximizes expected return from a fixed
initial state sq:

H—-1
max V(0) where V(0) =Er g r, {Z rt} .
t=0
The policy gradient algorithm performs gradient ascent to improve the pol-
icy, using the update
60— 0+ VoV(0)

CHAPTER 2. POLICY GRADIENT METHODS 12

Since, we can only get an estimator for the function V(6), we can get an
unbiased estimator for the policy gradient: Let 7 = (s, ag, 70, $1,--.,5H) be a
trajectory generated by following policy g,

VoV (0) =Ermn, [2—: <z_: rt> Vo logmg(az | st)} .

t=0 t=0

We now present the algorithm using this gradient estimate:

Algorithm 1: Vanilla Policy Gradient with Linear Policy

Input: Learning rate o, number of episodes IV
Output: Learned policy parameters § € R¥*d
{1} Initialize 8 < 0
{2} for i =1 to N do
{3} Sample a trajectory T = (sg, ag, 7o, - .., Sg) using policy 7y

{4} Compute return: R = Zf:?)l T

{5} Update parameters: 6 < 0 + « - Zf:)l R-Vylogmg(as | st)

{6} return 0

We can replace the total return term Zf: 61 r: with other functions that de-
pend on g, s¢, a+, such as the state-action value function Q™ (s;, a;) or the ad-
vantage function A™ (s;,a;) = Q™ (s, ar) — V™ (sy). Algorithms like TRPO [3]
and PPO [4] use these modifications and typically achieve better performance
than the vanilla policy gradient method in practice.

2.3 Implementing in Python

We now describe how to implement the vanilla policy gradient algorithm from
Algorithm 1 in Python, using PyTorch and Gymnasium.

2.3.1 Environment Setup and Dependencies

We recommend using a virtual environment to keep dependencies isolated.

Step 1: Create a virtual environment

python3 -m venv .venv
source .venv/bin/activate # on Linux/mac0S
.venv\Scripts\activate.bat # on Windows

Running the above code for the first time will lead to an error requiring Xcode
developer tools, followed by a prompt to install the necessary tools. Since this
installation requires a stable internet connection, it’s best to complete it a day
in advance.

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

32

33

CHAPTER 2. POLICY GRADIENT METHODS 13

Step 2: Install required packages

pip install --upgrade pip
pip install torch
pip install "gymnasium[classic-control]"

Step 3: Verify installation Check that PyTorch and Gymnasium work
correctly:

python -c "import torch; print(torch.__version__)"
python -c "import gymnasium as gym; env = gym.make('CartPole-v1'); print(env)"

2.3.2 Training on CartPole

Below is a full implementation using a linear softmax policy for CartPole:

Libraries to help construct neural networks
and train them.

import torch

import torch.nn as nn

import torch.optim as optim

Library to create and interact with environments.
import gymnasium as gym

Define the policy network
It first applies a linear mapping from the state space to hidden layer,
and then applies a softmaz activation to obtain the action probabilities.

class LinearPolicy(nn.Module):
def __init__(self, obs_dim, n_actions):
super () . __init__()
This has obs_dim = n_actions many parameters.
Useful to wnutively see how much data you need to train this.
self.linear = nn.Linear(obs_dim, n_actions)

def forward(self, x):
Basically <f self.linear(z) = [2, 3, —4]
softmaz(self.linear(z)) will normalize it to [0.4, 0.5, 0.1]
And if we do batch, then z is [batch_size, obs_dim]
self.linear(z) will be [batch_stize, n_actions]
softmaz(self.linear(z)) will be [batch_size, n_actions]
return torch.softmax(self.linear(x), dim=-1)

Next, we create our Cartpole environment
env = gym.make("CartPole-v1i")

Here is how the observation and action space looks like
obs_dim = env.observation_space.shape [0]

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

58

59

60

61

62

63

64

65

66

67

68

69

70

71

T2

73

T4

75

76

7

78

79

80

CHAPTER 2. POLICY GRADIENT METHODS 14

n_actions = env.action_space.n
print(£"S = R {obs_dim} and A = {list(range(n_actions))}")

policy = LinearPolicy(obs_dim, n_actions)
optimizer = optim.Adam(policy.parameters(), lr=le-2)

We train for 1000 episodes

for episode in range(1000):
We get our starting state from the environment
obs, _ = env.reset()

We need to store log probabilities and rewards for computing gradients
log_probs = []

rewards = []

done = False

We run our current policy until the end of episode

while not done:
Turn our state into a tensor (because nn uses tensors)
obs_tensor = torch.tensor(obs, dtype=torch.float32)

Compute action probabilities under our policy

Sample an action.

action_probs = policy(obs_tensor)

dist = torch.distributions.Categorical(action_probs)
action = dist.sample()

Exzecute the action in the environment, collect reward, new state
obs, reward, terminated, truncated, _ = env.step(action.item())

We need log probabilities and rewards to compute gradient, so lets save that
log_probs.append(dist.log_prob(action))
rewards.append (reward)

done = terminated or truncated

We need to turn rewards into tensors before using them.
rewards = torch.tensor(rewards, dtype=torch.float32)

Compute the loss to propagate the gradients
loss = -sum(log_probs)*sum(rewards)
optimizer.zero_grad()

loss.backward()

optimizer.step()

if episode 7 50 ==
print (f"Episode {episode}, return = {sum(rewards)}")

CHAPTER 2. POLICY GRADIENT METHODS 15

2.3.3 Visualizing the Learned CartPole Policy
To play back the trained policy:

env = gym.make("CartPole-v1", render_mode="human")

for episode in range(5):

obs, _ = env.reset()

done = False

while not done:
obs_tensor = torch.tensor(obs, dtype=torch.float32)
action_probs = policy(obs_tensor)
action = torch.argmax(action_probs).item()
obs, reward, terminated, truncated, _ = env.step(action)
done = terminated or truncated

env.close()

