Chapter 3

Optimism and Bellman
Equations

In the previous chapter, we ran the policy gradient algorithm on two environ-
ments: CartPole and Pong. We observed that finding the optimal policy was
much easier in CartPole than in Pong. This naturally raises the question: what
makes some RL problems easier than others?

By “easy,” we mean problems for which we can design algorithms that are ef-
ficient in both sample complexity (the amount of interaction required) and com-
putational complexity (the amount of computation, e.g., GPU hours, needed).

This chapter will focus on: when can we design sample efficient RL algo-
rithms? This chapter introduces two core algorithmic ideas in reinforcement
learning theory: optimism and bellman equations. These principles under-
lie many sample-efficient algorithms across various settings, including Linear
Bellman-Complete MDPs [5], Linear MDPs [6], Deterministic linear Q* [7], and
more. The first attempt to generalize these ideas was made in [8]. A broader
overview can be found in [9].

In this chapter, we focus on the simplest such setting—the linear setting—where
the optimal value functions V* and @Q* lie in a known linear function class.

Definition 3.1 (Linear V* and Q*). We assume that the optimal value func-
tions admit a known linear feature representation:

o Linear Q*: There exists an unknown parameter vector w* € R% and a
known feature map ¢ : S x A — R% such that

Q" (s,a) = (w*, ¢(s,a)) forall (s,a) € S x A.

e Linear V*: There exists an unknown parameter vector 0* € R? and a
known feature map ¢ : S — R? such that

V*(s) =(0",¢(s)) forallseS.

16

CHAPTER 3. OPTIMISM AND BELLMAN EQUATIONS 17

We use the same notation ¢ for both feature maps, with the meaning clear from
context.

We study the problem of learning a near-optimal policy in the finite-horizon
linear setting, where the agent interacts with the environment and seeks a
sample-efficient algorithm: one that learns a good policy using as few episodes
as possible.

Definition 3.2 (Goal: Sample-Efficient Algorithm for Linear Setting). Let
g,0 € (0,1) be accuracy and confidence parameters. The goal is to design an
algorithm which, with probability at least 1 — &, outputs a policy & such that

V7 (s0) > V*(s0) — &,

where V* denotes the value of an optimal policy and sq is the starting state. The
algorithm is sample efficient if the number of environment interactions required
is polynomial in the feature dimension d, number of actions |A|, horizon H, and
parameters =4 log 61,

3.1 Bellman Equation

A key observation behind our algorithm is the Bellman equation, which holds
for all state-action pairs (s, ap):
QZ (S}“ ah) = E [Th + V;:Jrl(Sthl)} . (31)

shy1~T(sh,an)
rn~R(sh,an)

This immediately implies:

E (@5 (snsan) = T = Viea (sh41)] = 0. (32)
sh+1~T(sn,an)
rh~R(sn,an)
We are interested in analyzing this identity under the distribution induced
by a policy, which we define next.

Definition 3.3 (Trajectory Distribution d™). Let m be a policy. The distribution
d} denotes the marginal over (sp,an,Th,Sp4+1) at time h under policy m, with
the following sampling process:

® 5o is the known starting state,

o a; ~m(sy), Sg41 ~ T(s,a4), and ry ~ R(sy, ar).
We write d™ = {df,...,d%_1} to denote the full set of marginals over the
trajectory.

Taking expectations in Equation (3.2) over any distribution on (sp,ap), in-
cluding the trajectory distribution d™ induced by a policy m, preserves the iden-
tity:

[Q* (snyan) — 11— Vi1 (snt1)] = 0. (3.3)

(8h,an,Th Sht1)~d],

CHAPTER 3. OPTIMISM AND BELLMAN EQUATIONS 18

For brevity, henceforth, we will use Egr to denote the above expectation. Finally,
note that given a policy 7, it is 5tra1ghtforward to sample from d” by interacting
with the environment: simply run 7 for multiple episodes and collect the tuples
(Shy@n,Thy Sht1) at each time step h.

3.2 Algorithm

We now present a sample-efficient algorithm that iteratively constructs policies
that are (a) optimistic, and (b) approzimately satisfy Bellman equation on past
data. At each iteration t, the algorithm uses data collected under previous
policies 71,...,m to construct a new policy m 1 that maximizes estimated
value while ensuring that its Bellman residual (Equation (3.3)) is small under
the empirical trajectory distributions from earlier policies.

Let CZZ" denote the empirical distribution over nep, = poly(d, H) transitions
(Sh,@h,Th, Shy1) collected from executing policy m,. The number of samples
collected per policy nemp and the constraint parameter econs will be chosen
later in the analysis.

Algorithm 2: Optimistic Algorithm

{1} for t =1,2, ..., Nyrounds do
{2} Solve the following optimization problem:

max (0, 0(s0))

t—1 2 g2
s.t. kZ:l&IZEk [(w,¢(sh,ah)> —rp - <9,¢)(Sh+1)>] < poly(d, H)

Here, ||0]|2, ||w||2 < 1 are norm constrained and satisfy

(0, 9(s)) = max,(w, ¢(s,a)) for all states s.

{3} Let 6;,w; be the resulting parameters. Define 7; as the resulting
policy defined by m:(s) = argmax, (w¢, ¢(s,a)).

{4} Execute 7 for nemp episodes, and use the collected data to

. .. A . L gme . g T H—1
construct empirical distributions d™ = {d};*}; ;-

{5} return the best policy 7; observed so far.;

3.3 Optimization Constraint in Linear Form

We begin by rewriting the constraint in our optimization program using the
linear representations of the value functions. Recall that we denote the time-
indexed value functions as Q7 and V;™, where h € {0,...,H — 1}. However, to
keep notation light, we will suppress the dependence on h in the remainder of

CHAPTER 3. OPTIMISM AND BELLMAN EQUATIONS 19

this proof, with the understanding that the analysis applies separately at each
time step.

At round t, let 8y, w; be the resulting parameters, and define m; as the re-
sulting policy defined by 7;(s) = argmax,(wy, #(s, a)). Define the concatenated
parameter and feature vectors:

W (m) = [wy, 0;] € R*,
= d]};t [(sh,an), —p(sny1)] € R34,

h

fa
g
|

Here, recall the notation Ed;"t is shorthand for the expectation over samples
(Sh,an, Sh+1) ~ dp'. The expected Bellman optimality equation for a candidate
policy 7; at time step h is:

d@t [(we, d(sn,an)) —rn — (0, d(sn+1))] (3.4)
=E [(we, @(shyan)) — (Or, ¢(sn+1)) — Q" (snyan) + V™ (snt1)]
=(W(m) = W(n"), X (7)), (3.5)

where the first equality uses the Bellman identity for the optimal policy (Equa-
tion (3.3)) to replace r, with Q*(sp,an) — V*(sp+1) in expectation.

3.4 Optimism: Bounding Regret

To analyze the regret, we relate the suboptimality of the current policy m; to
the difference between its parameters and those of the optimal value functions.
The key idea is optimism: the algorithm selects 6;, w; to maximize (6, ¢(so)),
which serves as an optimistic estimate of V™ (sg). Although this estimate may
be inaccurate, the algorithm proceeds by acting according to ;.

Lemma 3.4 (Regret Decomposition via Optimism). Let the policy m, and
vectors W (m;), X (m;) € R?? be as defined above. Then:

H-1
V(s0) = V™ (s0) < D (W (m) = W (™), Xp(m))].
h=0

Proof. Throughout, we use that ap = argmax,(ws, ¢(sp,a)). The claim follows

CHAPTER 3. OPTIMISM AND BELLMAN EQUATIONS 20

from:

V*(s0) = V™ (s0)

< {04, ¢(s0)) — V™ (s0) (follows from optimism)
H-1
= (wi, (s0,a0)) = E [Z 7"h:| (since (0¢, p(s0)) = (we, P(s0,a0)))
H-1 i
= deEt [(we, @(sn,an)) — ra — (wi, d(sh+1,ant1))] (by telescoping sum)
o
=2 E [{wr, ¢(sn,an)) —rn — (B, (snr1))]
h=0 “»
(since (01, p(snt1)) = (we, P(sn, an)))
H-1
< (W (ms) — W (n™), Xn(m))] - (follows from Equation (3.5))
h=0

O

3.5 Exploration: Bounding the Number of Rounds

The final step is to bound how many rounds npoungs are needed before the
algorithm identifies a policy m; with small suboptimality. We provide a simplified
argument, which can be improved to obtain tighter bounds.

The key idea is that for large enough nemp, the empirical distribution JZ’C
concentrates around the true distribution dj;*. Then, from the regret decompo-
sition lemma above (Lemma 3.4), we know that if the residual term (W (my) —
W (n*), Xp(my)) is zero for all h, then the policy 7 is optimal. Otherwise, a
nonzero residual indicates that 7 adds a new constraint that helps eliminate a
portion of the hypothesis space.

More precisely, these constraints are linear in the difference vector W(r) —
W (r*), and each non-redundant policy introduces a constraint that is at least
e-independent (Definition 3.5) of the previous ones. Since the vector space has
finite dimension 2d, only a bounded number of such e-independent constraints
can exist. This implies that the algorithm can only generate a finite number
of meaningfully distinct (and suboptimal) policies before it must identify the
optimal one.

Thus, it suffices to analyze the following situation: how many times can it
happen that

t—1

™ (W () = W (), Xn(m))? < 2
k=1
(W (m) = W(n*), Xn(m)))? > €2

CHAPTER 3. OPTIMISM AND BELLMAN EQUATIONS 21

This question—how many times an e-independent constraint can arise—was
first analyzed by Russo and Van Roy [10].

Definition 3.5 (e-independence). Let Sy = {# € R? : ||0]]2 < 1}. We say

Zn € Sq is e-independent of sequence {1, T2, ..., Tn_1} if there exists 0,0* € Sy
such that

n—1

D ((Oa) — (07 w))? <&

i=1

(0, z,) — (0%, 2,))° > &2

We now bound the number of such e-independent vectors that can appear
in a sequence.

Lemma 3.6 (Bound on Number of e-Independent Constraints). Let {x1,...,z,} C
Sq be a sequence such that each xy is e-independent of the previous vectors in
the sense of Definition 3.5. Then, the number n of such vectors is at most

r-ofem(?)

Proof. More generally, assume that [|zy[|2 < By for all k, and that [0 — 6*||2 <
2By. In our case, both By and By are 1.

Let V,, := Z?:_ll x;x] + M for some regularization A\ = €2/(2By)?%. If z,, is -
independent of the previous x1, . .., z,_1, then there exists 6, §* with ||§—6*|2 <
2By such that:

n—1
D007 x:)* <€ but ((0—0%,2,))° >

i=1

This implies:
n—1
e< {(9 —0") z,: (0—0")" (Z MT> (0—6")<e* and (0—0") I(0—0%)< (239)2}
i=1
n—1
< max {pTxn pl <Z 3:@?) p<e? and p'Ip< (2B9)2}
g i=1

n—1
< max {pT:rn : pT (Z :rle +)J) p < 252}
P
i=1
= V2e2||zp |y

And therefore,

1
H-TnH?/;l = xzvnilwn > .

\V]

CHAPTER 3. OPTIMISM AND BELLMAN EQUATIONS 22

We now analyze the growth of det(V},) using the matrix determinant lemma:

det(V,,) = det(Vo—1) (L + 2,11V, Y1)

> det(Vn_l) . ;

Tterating gives:

det(V;,) > det(\I) - (3)n1 =\ (g’)nl)

On the other hand, since trace(V;,) < anb +d)\, we apply the AM—-GM inequal-

ity:
d BQ d
det(V;,) < (LCZ(V”)) < (” — +)\> .

Equating the lower and upper bounds on det(V;,) gives:

n—1 n32 d
Ad@) <<d¢+A .

Solving this inequality yields the desired bound:

B2B?
n-O(d-log(9€ ¢>>

