
Chapter 3

Optimism and Bellman
Equations

In the previous chapter, we ran the policy gradient algorithm on two environ-
ments: CartPole and Pong. We observed that finding the optimal policy was
much easier in CartPole than in Pong. This naturally raises the question: what
makes some RL problems easier than others?

By “easy,” we mean problems for which we can design algorithms that are ef-
ficient in both sample complexity (the amount of interaction required) and com-
putational complexity (the amount of computation, e.g., GPU hours, needed).

This chapter will focus on: when can we design sample e!cient RL algo-
rithms? This chapter introduces two core algorithmic ideas in reinforcement
learning theory: optimism and bellman equations. These principles under-
lie many sample-e!cient algorithms across various settings, including Linear
Bellman-Complete MDPs [5], Linear MDPs [6], Deterministic linear Q* [7], and
more. The first attempt to generalize these ideas was made in [8]. A broader
overview can be found in [9].

In this chapter, we focus on the simplest such setting—the linear setting—where
the optimal value functions V → and Q→ lie in a known linear function class.

Definition 3.1 (Linear V → and Q→). We assume that the optimal value func-

tions admit a known linear feature representation:

• Linear Q→: There exists an unknown parameter vector w→ → Rd
and a

known feature map ω : S ↑A ↓ Rd
such that

Q→(s, a) = ↔w→,ω(s, a)↗ for all (s, a) → S ↑A.

• Linear V →: There exists an unknown parameter vector ε→ → Rd
and a

known feature map ω : S ↓ Rd
such that

V →(s) = ↔ε→,ω(s)↗ for all s → S.

16



CHAPTER 3. OPTIMISM AND BELLMAN EQUATIONS 17

We use the same notation ω for both feature maps, with the meaning clear from

context.

We study the problem of learning a near-optimal policy in the finite-horizon
linear setting, where the agent interacts with the environment and seeks a
sample-e!cient algorithm: one that learns a good policy using as few episodes
as possible.

Definition 3.2 (Goal: Sample-E!cient Algorithm for Linear Setting). Let

ϑ, ϖ → (0, 1) be accuracy and confidence parameters. The goal is to design an

algorithm which, with probability at least 1↘ ϖ, outputs a policy ϱ̂ such that

V ω̂(s0) ≃ V →(s0)↘ ϑ,

where V →
denotes the value of an optimal policy and s0 is the starting state. The

algorithm is sample e!cient if the number of environment interactions required

is polynomial in the feature dimension d, number of actions |A|, horizon H, and

parameters ϑ↑1, log ϖ↑1
.

3.1 Bellman Equation

A key observation behind our algorithm is the Bellman equation, which holds
for all state-action pairs (sh, ah):

Q→
h(sh, ah) = E

sh+1↓T (sh,ah)
rh↓R(sh,ah)

[
rh + V →

h+1(sh+1)
]
. (3.1)

This immediately implies:

E
sh+1↓T (sh,ah)
rh↓R(sh,ah)

[
Q→

h(sh, ah)↘ rh ↘ V →
h+1(sh+1)

]
= 0. (3.2)

We are interested in analyzing this identity under the distribution induced
by a policy, which we define next.

Definition 3.3 (Trajectory Distribution dω). Let ϱ be a policy. The distribution

dωh denotes the marginal over (sh, ah, rh, sh+1) at time h under policy ϱ, with
the following sampling process:

• s0 is the known starting state,

• at ⇐ ϱ(st), st+1 ⇐ T (st, at), and rt ⇐ R(st, at).

We write dω = {dω0 , . . . , dωH↑1} to denote the full set of marginals over the

trajectory.

Taking expectations in Equation (3.2) over any distribution on (sh, ah), in-
cluding the trajectory distribution dω induced by a policy ϱ, preserves the iden-
tity:

E
(sh,ah,rh,sh+1)↓dω

h

[
Q→(sh, ah)↘ rh ↘ V →

h+1(sh+1)
]
= 0. (3.3)



CHAPTER 3. OPTIMISM AND BELLMAN EQUATIONS 18

For brevity, henceforth, we will use Edω
h
to denote the above expectation. Finally,

note that given a policy ϱ, it is straightforward to sample from dω by interacting
with the environment: simply run ϱ for multiple episodes and collect the tuples
(sh, ah, rh, sh+1) at each time step h.

3.2 Algorithm

We now present a sample-e!cient algorithm that iteratively constructs policies
that are (a) optimistic, and (b) approximately satisfy Bellman equation on past

data. At each iteration t, the algorithm uses data collected under previous
policies ϱ1, . . . ,ϱt to construct a new policy ϱt+1 that maximizes estimated
value while ensuring that its Bellman residual (Equation (3.3)) is small under
the empirical trajectory distributions from earlier policies.

Let d̂ωk
h denote the empirical distribution over nemp = poly(d,H) transitions

(sh, ah, rh, sh+1) collected from executing policy ϱk. The number of samples
collected per policy nemp and the constraint parameter ϑcons will be chosen
later in the analysis.

Algorithm 2: Optimistic Algorithm

{1} for t = 1, 2, . . . , nrounds do

{2} Solve the following optimization problem:

max
ε,w

↔ε,ω(s0)↗

s.t.
t↑1∑

k=1

Ê
d
ωk
h

[
↔w,ω(sh, ah)↗ ↘ rh ↘ ↔ε,ω(sh+1)↗

]2
⇒ ϑ2

poly(d,H)

Here, ⇑ε⇑2, ⇑w⇑2 ⇒ 1 are norm constrained and satisfy
↔ε,ω(s)↗ = maxa↔w,ω(s, a)↗ for all states s.

{3} Let εt, wt be the resulting parameters. Define ϱt as the resulting
policy defined by ϱt(s) = argmaxa↔wt,ω(s, a)↗.

{4} Execute ϱt for nemp episodes, and use the collected data to

construct empirical distributions d̂ωt = {d̂ωt
h }H↑1

h=0 .;

{5} return the best policy ϱt observed so far.;

3.3 Optimization Constraint in Linear Form

We begin by rewriting the constraint in our optimization program using the
linear representations of the value functions. Recall that we denote the time-
indexed value functions as Qω

h and V ω
h , where h → {0, . . . , H ↘ 1}. However, to

keep notation light, we will suppress the dependence on h in the remainder of



CHAPTER 3. OPTIMISM AND BELLMAN EQUATIONS 19

this proof, with the understanding that the analysis applies separately at each
time step.

At round t, let εt, wt be the resulting parameters, and define ϱt as the re-
sulting policy defined by ϱt(s) = argmaxa↔wt,ω(s, a)↗. Define the concatenated
parameter and feature vectors:

W (ϱt) := [wt, εt] → R2d,

X(ϱt) := E
d
ωt
h

[ω(sh, ah),↘ω(sh+1)] → R2d.

Here, recall the notation Ed
ωt
h

is shorthand for the expectation over samples

(sh, ah, sh+1) ⇐ dωt
h . The expected Bellman optimality equation for a candidate

policy ϱt at time step h is:

E
dωt

[↔wt,ω(sh, ah)↗ ↘ rh ↘ ↔εt,ω(sh+1)↗] (3.4)

= E
dωt

[↔wt,ω(sh, ah)↗ ↘ ↔εt,ω(sh+1)↗ ↘Q→(sh, ah) + V →(sh+1)]

=↔W (ϱt)↘W (ϱ→), X(ϱt)↗, (3.5)

where the first equality uses the Bellman identity for the optimal policy (Equa-
tion (3.3)) to replace rh with Q→(sh, ah)↘ V →(sh+1) in expectation.

3.4 Optimism: Bounding Regret

To analyze the regret, we relate the suboptimality of the current policy ϱt to
the di”erence between its parameters and those of the optimal value functions.
The key idea is optimism: the algorithm selects εt, wt to maximize ↔εt,ω(s0)↗,
which serves as an optimistic estimate of V ωt(s0). Although this estimate may
be inaccurate, the algorithm proceeds by acting according to ϱt.

Lemma 3.4 (Regret Decomposition via Optimism). Let the policy ϱt, and

vectors W (ϱt), X(ϱt) → R2d
be as defined above. Then:

V →(s0)↘ V ωt(s0) ⇒
H↑1∑

h=0

|↔W (ϱt)↘W (ϱ→), Xh(ϱt)↗| .

Proof. Throughout, we use that ah = argmaxa↔wt,ω(sh, a)↗. The claim follows



CHAPTER 3. OPTIMISM AND BELLMAN EQUATIONS 20

from:

V →(s0)↘ V ωt(s0)

⇒ ↔εt,ω(s0)↗ ↘ V ωt(s0) (follows from optimism)

= ↔wt,ω(s0, a0)↗ ↘ E
dωt

[
H↑1∑

h=0

rh

]
(since ↔εt,ω(s0)↗ = ↔wt,ω(s0, a0)↗)

=
H↑1∑

h=0

E
d
ωt
h

[↔wt,ω(sh, ah)↗ ↘ rh ↘ ↔wt,ω(sh+1, ah+1)↗] (by telescoping sum)

=
H↑1∑

h=0

E
d
ωt
h

[↔wt,ω(sh, ah)↗ ↘ rh ↘ ↔εt,ω(sh+1)↗]

(since ↔εt,ω(sh+1)↗ = ↔wt,ω(sh, ah)↗)

⇒
H↑1∑

h=0

|↔W (ϱt)↘W (ϱ→), Xh(ϱt)↗| . (follows from Equation (3.5))

3.5 Exploration: Bounding the Number of Rounds

The final step is to bound how many rounds nrounds are needed before the
algorithm identifies a policy ϱt with small suboptimality. We provide a simplified
argument, which can be improved to obtain tighter bounds.

The key idea is that for large enough nemp, the empirical distribution d̂ωk
h

concentrates around the true distribution dωk
h . Then, from the regret decompo-

sition lemma above (Lemma 3.4), we know that if the residual term ↔W (ϱk)↘
W (ϱ→), Xh(ϱk)↗ is zero for all h, then the policy ϱk is optimal. Otherwise, a
nonzero residual indicates that ϱk adds a new constraint that helps eliminate a
portion of the hypothesis space.

More precisely, these constraints are linear in the di”erence vector W (ϱ) ↘
W (ϱ→), and each non-redundant policy introduces a constraint that is at least
ϑ-independent (Definition 3.5) of the previous ones. Since the vector space has
finite dimension 2d, only a bounded number of such ϑ-independent constraints
can exist. This implies that the algorithm can only generate a finite number
of meaningfully distinct (and suboptimal) policies before it must identify the
optimal one.

Thus, it su!ces to analyze the following situation: how many times can it
happen that

t↑1∑

k=1

(↔W (ϱt)↘W (ϱ→), Xh(ϱk)↗)2 ⇒ ϑ2

(↔W (ϱt)↘W (ϱ→), Xh(ϱt)↗)2 > ϑ2



CHAPTER 3. OPTIMISM AND BELLMAN EQUATIONS 21

This question—how many times an ϑ-independent constraint can arise—was
first analyzed by Russo and Van Roy [10].

Definition 3.5 (ϑ-independence). Let Sd = {ε → Rd : ⇑ε⇑2 ⇒ 1}. We say

xn → Sd is ϑ-independent of sequence {x1, x2, . . . , xn↑1} if there exists ε, ε→ → Sd

such that

n↑1∑

i=1

(↔ε, xi↗ ↘ ↔ε→, xi↗)2 ⇒ ϑ2

(↔ε, xn↗ ↘ ↔ε→, xn↗)2 > ϑ2

We now bound the number of such ϑ-independent vectors that can appear
in a sequence.

Lemma 3.6 (Bound on Number of ϑ-Independent Constraints). Let {x1, . . . , xn} ⇓
Sd be a sequence such that each xk is ϑ-independent of the previous vectors in

the sense of Definition 3.5. Then, the number n of such vectors is at most

n = O

(
d · log

(
1

ϑ

))
.

Proof. More generally, assume that ⇑xk⇑2 ⇒ Bϑ for all k, and that ⇑ε↘ ε→⇑2 ⇒
2Bε. In our case, both Bϑ and Bε are 1.

Let Vn :=
∑n↑1

i=1 xix↔
i +ςI for some regularization ς = ϑ2/(2Bε)2. If xn is ϑ-

independent of the previous x1, . . . , xn↑1, then there exists ε, ε→ with ⇑ε↘ε→⇑2 ⇒
2Bε such that:

n↑1∑

i=1

(↔ε ↘ ε→, xi↗)2 ⇒ ϑ2, but (↔ε ↘ ε→, xn↗)2 > ϑ2.

This implies:

ϑ ⇒
{
(ε ↘ ε→)↔ xn : (ε ↘ ε→)↔

(
n↑1∑

i=1

xix
↔
i

)
(ε ↘ ε→) ⇒ ϑ2 and (ε ↘ ε→)↔ I (ε ↘ ε→) ⇒ (2Bε)

2

}

⇒ max
ϖ

{
φ↔xn : φ↔

(
n↑1∑

i=1

xix
↔
i

)
φ ⇒ ϑ2 and φ↔Iφ ⇒ (2Bε)

2

}

⇒ max
ϖ

{
φ↔xn : φ↔

(
n↑1∑

i=1

xix
↔
i + ςI

)
φ ⇒ 2ϑ2

}

=
⇔
2ϑ2⇑xn⇑V →1

n

And therefore,

⇑xn⇑2V →1
n

= x↔
n V

↑1
n xn ≃ 1

2
.



CHAPTER 3. OPTIMISM AND BELLMAN EQUATIONS 22

We now analyze the growth of det(Vn) using the matrix determinant lemma:

det(Vn) = det(Vn↑1)
(
1 + x↔

n↑1V
↑1
n↑1xn↑1



≃ det(Vn↑1) ·
3

2
.

Iterating gives:

det(Vn) ≃ det(ςI) ·
(
3

2

)n↑1

= ςd

(
3

2

)n↑1

.

On the other hand, since trace(Vn) ⇒ nB2
ϑ+dς, we apply the AM–GM inequal-

ity:

det(Vn) ⇒
(
trace(Vn)

d

)d

⇒
(
nB2

ϑ

d
+ ς

)d

.

Equating the lower and upper bounds on det(Vn) gives:

ςd

(
3

2

)n↑1

⇒
(
nB2

ϑ

d
+ ς

)d

.

Solving this inequality yields the desired bound:

n = O

(
d · log

(
B2

εB
2
ϑ

ϑ

))
.


