Chapter 4

Computational Complexity

In the previous chapter, we showed how to find an approximately optimal policy
in a sample-efficient manner—that is, by interacting with the transition and
reward functions at most polynomially many times in the feature dimension d
and horizon H. In this chapter, we show that despite the statistical problem
being easy, the computational problem is hard: no efficient algorithm exists for
solving the same problem under standard complexity assumptions.

4.1 Complexity Problems

Our proof is based on a reduction from the classical 3-SAT problem:

Definition 4.1 (3-SAT). Given a Boolean formula ¢ in conjunctive normal
form (CNF) with v variables and O(v) clauses, the goal is to determine whether
@ is satisfiable—that is, whether there exists an assignment w € {0,1}" such
that every clause in ¢ evaluates to True.

For example, the formula (z1 V 2o V 23) A (mz1 V 22 V 23) A (m21 V 23 V
x4) is satisfiable. We now formally define the interaction model for the linear
reinforcement learning (RL) problem:

Definition 4.2 (Linear RL and Interaction Model). An algorithm is given ac-
cess to a deterministic finite-horizon MDP M with horizon H, and the following
oracles:

e Reward oracle: Given a state s and action a, returns a sample from

R(s,a).

o Transition oracle: Given a state s and action a, returns the next state
T(s,a).

e Feature oracle: Given a state s (or a state-action pair (s,a)), returns
the corresponding d-dimensional feature vector ¢(s) or ¢(s,a).
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Each oracle call has constant runtime, and all input/output sizes are polynomial
in the feature dimension d.

We assume that the optimal value functions Q* and V* are linear in these
features (Definition 3.1). Our goal is to prove the following computational lower
bound for finding an approximate optimal policy:

Theorem 4.3. Unless NP = RP, there is no polynomial-time algorithm which,
given access to a deterministic MDP M with at least two actions and hori-
zon H = O(d), where the optimal value functions Q* and V* are linear in
d-dimensional features ¢ (Definition 3.1), outputls a policy 7 satisfying V™ >
V* —1/4 with constant probability.

We construct such MDPs from 3-SAT formulas in a way that an efficient
algorithm for solving the MDP would yield an efficient algorithm for solving
3-SAT.

4.2 Linear Infinite-Horizon MDP

To build intuition, we begin with an infinite-horizon deterministic MDP derived
from a CNF formula. Consider the example:

(x1VaaVas)A(—z1Vas V) A(mxr Vs Ve Az Vaa V-oxs) A(—z Ve V-xs)
We define an infinite-horizon MDP (whose unrolling is illustrated in Fig-
ure 4.1) as follows:

e Each state corresponds to a partial assignment w € {0,1}" of the SAT
variables. The root corresponds to the all-zero assignment.

e The process terminates when the agent reaches a pre-decided satisfying
assignment w*.

e From any state w, an unsatisfied clause is selected, and the agent chooses
among three actions: flipping one of the three variables in that clause.

e Each action incurs a reward of —1.

Because each action has a reward of —1, the optimal policy minimizes the
path length to the satisfying assignment w*. This leads to the following:

Lemma 4.4. The optimal value functions Q* and V* are linear in w and w*.
Specifically, for a state s with assignment w:

Vi(s) = =D(w, w"),

where D(w,w*) is the Hamming distance between w and w*. Since D(w,w*) =
$(v—(w,w*)), it is linear in both w and w*. Moreover, Q*(s,a) = V*(T(s,a))—
1.

While conceptually clean, this construction is infinite-horizon. Truncating
the tree to make it finite-horizon would require inserting leaf rewards that de-
pend on w*, which cannot be simulated efficiently.
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Figure 4.1: Unrolling of an infinite-horizon MDP based on SAT clauses. Each
node corresponds to an assignment; actions flip variables in an unsatisfied clause.

4.3 Linear Finite-Horizon MDP

To address this, we define a finite-horizon MDP with carefully constructed leaf
rewards. Rewards are zero everywhere except at the leaves. At a leaf with
assignment w and depth [, the expected reward is:

l+D(w,w*))r'

E[R(w,1)] = (1 R T

This form ensures that the optimal value function has the same structure:

Lemma 4.5. The optimal value function at a state s with assignment w and
depth 1 is
I+ D(w,w*)\"
Vi) =(1— ————"—+2) .
(5) ( H+v
This function is a degree-r polynomial in the inner product (w,w*), and thus
linear in d = v"-dimensional features.

Sketch. See [11] for details. The greedy policy that flips variables to reduce
D(w,w*) by 1 per step (and thus increases [ by 1) maintains D(w,w*) + [ as
a constant. Since the reward is decreasing in this quantity, the greedy policy
is optimal, and the value function inherits the same functional form as the
reward. O

Suppose we truncate the tree at depth H = d = v”. Then the maximum
reward at the final level is:

H " v " 2
1— — — =007
( H+v) (H—l—v) v

Since any algorithm restricted to polynomial time in d and H can reach only
poly(v") states, it will observe negligible reward at the leaves and gain no useful
information.

In conclusion, while statistically efficient algorithms exist under the assump-
tion that V* and Q* are linear in known features, computationally efficient
algorithms do not—unless NP = RP.
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