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Chapter 1

Basics of Reinforcement
Learning

In this chapter, we begin with motivating examples and then introduce the
mathematical framework used to model decision-making problems in reinforce-
ment learning. Let’s start with a few real-world scenarios that illustrate the
types of problems reinforcement learning aims to solve. These examples are
described informally, without invoking RL-specific terminology. Our goal is to
revisit them later and show how they can be modeled using the RL framework.

1.1 The Slot Machine Problem: Exploration vs
Exploitation.

Imagine walking into a casino and finding 3 slot machines lined up in front of
you. Each machine, when played, gives a random reward between 0 and 100.
The machines differ in how they are programmed — some machines may tend
to give higher rewards on average, while others may be worse.

Figure 1.1: An example of 3 slot machines. Some slot machines may give higher
rewards on average.

You only have time to play a total of 1000 times, across all the machines
combined, and your goal is to maximize the total reward you earn. This scenario
raises an important question: how should you decide which machines to play?
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e On the one hand, you would like to explore the different machines, by
trying each of them enough times to estimate how good they are.

e On the other hand, you would also like to ezploit your current knowledge
by repeatedly playing the machines that seem to offer the best rewards so
far.

Balancing this trade-off between exploration (gathering information) and
exploitation (maximizing reward based on current knowledge) is one of the core
challenges in reinforcement learning.

1.2 Learning to Play Chess: Credit Assignment

Let’s consider another scenario. Suppose you are an Al agent learning how to
play chess against a human opponent. At each turn, the agent observes the
current state of the game — that is, the configuration of all pieces on the board
— and decides which move to make.

Figure 1.2: An example chess board configuration. The agent observes the state
of the board and decides on a move.

In principle, if the agent could determine the best move for every possible
board configuration, it would be able to play optimally. However, learning what
the best move is in each state is a highly challenging task for several reasons.

e First, the agent only receives feedback at the end of each game: it ei-
ther wins, loses, or draws. The consequence of individual moves is not
immediately known.

e Secondly, since chess involves rich strategic interactions between pieces, it
can be hard to determine which specific actions, or sequences of actions,
are responsible for this final outcome.
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1.3 Reinforcement Learning Formulation

Both of the examples above, as well as many other real-world problems, can
be cast in the reinforcement learning (RL) framework. In this framework, we
model the interaction between two entities: The agent, which makes decisions
by observing its current situation and choosing actions. The environment,
which responds to the agent’s actions by providing feedback in the form of
rewards and updating the situation accordingly. The interaction proceeds as
follows:

St+1,Tt

2

Environment Agent

N

a¢

Figure 1.3: Interaction loop between the agent and environment in reinforce-
ment learning. At each time step ¢, the agent observes the state s;, takes an
action a;, and receives a new state sy;41 and reward ry.

1. The agent begins in some state representing the current situation.

2. Based on the observed state, the agent chooses an action from the set of
allowed actions.

3. The environment responds by:
e Providing the agent with a reward, which reflects the immediate qual-
ity of the chosen action in the current state.
e Updating the state, potentially in a stochastic (random) manner,

based on the agent’s action.

4. The agent observes the new state and repeats the process.

This sequence continues over a series of steps, often called an episode, which
may end after a fixed number of steps or upon reaching a special terminal
state. The goal of the agent is to learn a strategy that maximizes its expected
cumulative reward over time. We now formalize this setup mathematically.
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1.4 Markov Decision Process

The standard framework for modeling reinforcement learning problems is the
Markov Decision Process (MDP). This framework captures the sequential nature
of decision-making under uncertainty.

Definition 1.1 (Markov Decision Process). A finite-horizon Markov De-
cision Process (MDP) is described by:

1. State space S': the set of all possible states.
2. Action space A: the set of all actions available to the agent.

3. Transition function T : S x A — A(S)!: The transition function describes
the next state given the current state and the action chosen by the agent.
If the current state is s, and the agent takes action a, the next state s’ is
drawn from the distribution T(s,a).

4. Reward function R : S x A — A([0,1])): The reward function describes
the immediate reward given the current state and the action chosen by the
agent. If the current state is s, and the agent takes action a, then the
reward r is drawn from the distribution R(s,a).

5. Initial state sg € S: the starting state of each episode.

6. Horizon H € N: the number of time steps over which the agent interacts
with the environment in an episode, before restarting from initial state sg.

Remark 1.2. Instead of a fized starting state sg, one can assume an initial
state distribution p € A(S). This is a more general model, but assuming a fized
starting state simplifies analysis and is without loss of generality: a random
initial state can be simulated by adding a dummy initial state and increasing the
horizon by 1.

We now formally define how an agent interacts with the environment in a
given MDP. The interaction follows the following protocol:

1. The agent starts in state sg.
2. For each time stept =0,1,...,H — 1

(a) The agent observes the state s;
(b) The agent selects an action a; € A based on its policy.
(¢) The environment provides a reward r; ~ R(s¢, at).

(d) The environment transitions to the next state sy11 ~ T(s¢, at).

LGiven any finite set K, define A(K) as the set of all probability distributions over K, i.e.,

A(K)={p: K —[0,1]: > p(k)=1}.
keK
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The decisions made by the agent are specified by a policy. Formally, a policy
is a function 7 : S — A(A), where 7(s) is a distribution over actions given the
current state s. That is, at each time ¢, the agent samples action a; ~ m(s¢).

Definition 1.3 (Goal). The goal of the agent is to find a policy that maximizes
the expected cumulative reward over the horizon. In other words, the objective
s to solve the optimization problem:

H-1
max Er r » E e,
T

t=0

where the expectation is over the randommness in the transition function, reward
function, and the policy.

In reality (similar to standard PAC learning settings), we only expect to find
an approximate optimal policy with some constant probability.

1.5 Unrolling the MDP

In general, the transition function is stochastic, but to build intuition, it will also
be useful to consider deterministic transition function. When the transitions are
deterministic, we can visualize the unrolling of the MDP, into a tree (Figure 1.4).

S6

3

oF

Initial state a2 ;
O s
S0

o

Figure 1.4: Unrolling of an MDP with states S = {so, 1, $2, ..., S6} and actions
A = {a1,a2,a3}. Each node corresponds to some state s € S; edges correspond
to some action a € A, and transition to some state s’ € S given by T'(s,a). The
root of the tree is the initial state sq.

1.6 Value Functions

To reason about how good a policy is, we define two central objects in reinforce-
ment learning: the state value function and the state-action value function.

Definition 1.4 (Value Functions). Let m: .S — A(A) be a policy, and let H be
the horizon. For each time step h € {0,...,H — 1}, we define:
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Sh—S],

i.e., the expected total reward collected from time h to H — 1, starting in
state s and following policy 7.

e The state value function V;7 : § = R as:

H-1

D

t=h

Vhﬂ— (S) = Eﬂ,T,R

e The state-action value function QF : S x A =+ R as:

H-1

Qy(s,a) =E,rr [Z Tt

t=h

sh:s,ah:a],

i.e., the expected total reward obtained by taking action a in state s at time
h, and then following policy ™ until the end of the episode.

To simplify notation, we embed the time step h into the state (e.g., by
replacing s with the pair (s, h)), and will often use V7 (s) and Q7 (s, a) to denote
the value functions. We use V* and @Q* to denote the value functions V*(s) =
max, V™(s) and Q*(s,a) = max, Q™ (s, a) and refer to the corresponding policy
as the optimal policy 7*2.

2even though optimal policy 7* is not unique, V*(s) and Q*(s,a) defined as max, V™ (s)

and max, Q™ (s,a) are unique.



Chapter 2

Policy Gradient Methods

Recall that the goal of reinforcement learning is to solve the following optimiza-
tion problem:

H—1
max V7 (sg) := max Ep g - E el
™ s

t=0

where sq is a fixed initial state. Policy gradient methods approach this problem
by iteratively improving the policy using local gradient-based updates.

V™ (s0)

Policy Paramgter

Figure 2.1: Gradient ascent step improves the policy value V™ (s).

Suppose we have a policy 7 with value V™ (sg). Unless 7 is optimal, there
always exists a small perturbation of the policy that leads to a higher expected
return. Specifically, for a small change in policy from 7 to 7/, we can approxi-
mate the change in value as:

V™ (s0) & V™(50) + VaV™(50) - (' — ),
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where V., V7™ (sg) is the gradient of the value function with respect to the policy
parameters. This suggests that we can improve the policy by moving in the
direction of the gradient:

=7+ aV,V"(s),

where a > 0 is a learning rate. This update rule is the foundation of policy
gradient methods, which directly optimize the expected return by estimating
and following the gradient (see Figure 2.1 for an illustration).

In the rest of this chapter, we introduce a simple gradient-based algorithm,
and implement it to solve two environments: CartPole and Pong.

2.1 Environments: CartPole and Pong

In this chapter, we focus on implementing policy gradient methods to solve
two benchmark environments in reinforcement learning: CartPole and Pong.
These environments differ in terms of state representation, action space, and the
challenges they present for learning-based algorithms. We begin by introducing
each environment in detail.

2.1.1 CartPole Environment

The CartPole environment is a classic control problem where the objective is to
prevent a pole, hinged on a cart, from falling over. The agent can apply a force
of fixed magnitude to the left or right of the cart to balance the pole.

Figure 2.2: Screenshot of the CartPole environment. The agent applies left /right
forces to the cart to keep the pole balanced.
e Observation space: A 4-dimensional continuous vector:
obs = (cart position, cart velocity, pole angle, pole angular velocity)

The observation limits are summarized in the table below:
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Num | Observation Min Max
0 Cart Position —4.8 4.8
1 Cart Velocity —00 0
2 Pole Angle ~ —0.418 rad (—24°) | ~ 0.418 rad (24°)
3 Pole Angular Velocity —o0 00

e Action space: A discrete set {0,1}, where 0 represents pushing the cart
to the left, and 1 to the right.

e Reward: The agent receives a reward of +1 for every timestep that the
pole remains upright.

e Episode termination: An episode ends when the pole angle exceeds
424° or the cart moves beyond +4.8 units from the center or 500 timesteps.

We use the implementation available in the Gymnasium library [1] under
the environment name CartPole-v1.

2.1.2 Pong Environment

Pong is a visually rich environment based on the Atari 2600 game. The agent
controls a paddle and aims to win a game of Pong against a built-in opponent.
The objective of the game is to keep deflecting the ball away from your goal
and into the opponent’s goal.

Figure 2.3: Frame from the Pong environment.

orange is the opponent.

100 150

Green paddle is the agent,

e Observation space: An RGB image of shape (210, 160, 3) representing
the full screen.




CHAPTER 2. POLICY GRADIENT METHODS 11

e Action space: A discrete set of 6 actions, of which we restrict to 3
meaningful ones: NOOP, UP, and DOWN.

e Reward: +1 when the agent scores a point, -1 when the agent loses a
point, and 0 otherwise.

e Episode termination: A game ends when one of the players reaches 21
points.

We use the implementation from the ALE (Arcade Learning Environment)
interface in Gymnasium [2], under the environment name ALE/Pong-v5.

2.2  Vanilla Policy Gradient Algorithm

In this section, we describe how to solve CartPole and Pong using the policy
gradient algorithm with a linear policy. We first formalize the policy represen-
tation, then present the algorithm and explain the gradient derivation used to
update the policy parameters.

2.2.1 Policy Parameterization

Let the state space be S C R? and the action space be finite, A = {1,2,..., K},
where d is the dimension of the observation vector and K = |A| is the number
of discrete actions. For CartPole and Pong, (d, K) are (4,2) and (210%160%3 =
100800, 3) respectively. We define a policy 7wy : S — A(A) using a softmax
function over a linear function of the state:

exp((0q, s))
Za’eA exp({far, 5>)’
where 6 = (0y,...,0k) is a matrix in RE*? and 6§, € R? is the parameter

vector associated with action a. The policy assigns a probability distribution
over actions based on the current state.

mo(a | s) =

2.2.2 Algorithm

Our goal is to find a policy my that maximizes expected return from a fixed
initial state sq:

H-1
max V() where V(0) =Er g, [Z Tt} .
t=0
The policy gradient algorithm performs gradient ascent to improve the pol-
icy, using the update
0 —0+VoeV(0)
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Since, we can only get an estimator for the function V(6), we can get an
unbiased estimator for the policy gradient: Let 7 = (sg, ap, 70, S1,...,8m) be a
trajectory generated by following policy 7y,

H-1 /H-1
VoV (0) =Ern, lz (Z rt> Vo log mg(as | st)] .

t=0 t=0

We now present the algorithm using this gradient estimate:

Algorithm 1: Vanilla Policy Gradient with Linear Policy

Input: Learning rate o, number of episodes NV
Output: Learned policy parameters § € R¥>¢
{1} Initialize # + 0
{2} fori=1 to N do
{3} Sample a trajectory T = (sg, ao, 7o, ---,Sg) using policy g
{4} Compute return: R = Zf:)l T
{5} Update parameters: 6 < 6 + o - Zf:?)l R -Vyglogmg(as | st)

{6} return 6

We can replace the total return term Zfl: 61 ry with other functions that de-
pend on 7y, S¢, a, such as the state-action value function Q7 (s, a¢) or the ad-
vantage function A™ (s¢,ar) = Q™ (s, ar) — V™ (s¢). Algorithms like TRPO [3]
and PPO [4] use these modifications and typically achieve better performance
than the vanilla policy gradient method in practice.

2.3 Implementing in Python

We now describe how to implement the vanilla policy gradient algorithm from
Algorithm 1 in Python, using PyTorch and Gymnasium.

2.3.1 Environment Setup and Dependencies

We recommend using a virtual environment to keep dependencies isolated.

Step 1: Create a virtual environment

python3 -m venv .venv
source .venv/bin/activate # on Linux/mac0S
.venv\Scripts\activate.bat # on Windows

Running the above code for the first time will lead to an error requiring Xcode
developer tools, followed by a prompt to install the necessary tools. Since this
installation requires a stable internet connection, it’s best to complete it a day
in advance.
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Step 2: Install required packages

pip install --upgrade pip
pip install torch
pip install "gymnasium[classic-control]"

Step 3: Verify installation Check that PyTorch and Gymnasium work
correctly:

python -c "import torch; print(torch.__version__)"
python -c "import gymnasium as gym; env = gym.make('CartPole-v1'); print(env)"

2.3.2 Training on CartPole

Below is a full implementation using a linear softmax policy for CartPole:

# Libraries to help construct neural networks
# and train them.

import torch

import torch.nn as nn

import torch.optim as optim

# Library to create and interact with environments.
import gymnasium as gym

# Define the policy network
# It first applies a linear mapping from the state space to hidden layer,
# and then applies a softmaz activation to obtain the action probabilities.

class LinearPolicy(nn.Module):
def __init__(self, obs_dim, n_actions):
super (). __init__(Q)
# This has obs_dim = n_actions many parameters.
# Useful to inutively see how much data you need to train this.
self.linear = nn.Linear(obs_dim, n_actions)

def forward(self, x):
# Basically if self.linear(z) = [2, 3, —4]
# softmaz(self.linear(z)) will normalize it to [0.4, 0.5, 0.1]
# And if we do batch, then z is [batch_size, obs_dim]
# self.linear(z) will be [batch_size, n_actions]
# softmaz(self.linear(z)) will be [batch_size, n_actions]
return torch.softmax(self.linear(x), dim=-1)

# Next, we create our Cartpole environment
env = gym.make("CartPole-v1")

# Here 1s how the observation and action space looks like
obs_dim = env.observation_space.shape[0]
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n_actions = env.action_space.n

print(f"S = R"{obs_dim} and A = {list(range(n_actions))}")

policy = LinearPolicy(obs_dim, n_actions)

optimizer = optim.Adam(policy.parameters(), lr=1le-2)

# We train for 1000 episodes
for episode in range(1000):

# We get our starting state from the environment

obs, _ = env.reset()

# We need to store log probabilities and rewards for computing gradients

log_probs = []
rewards = []
done = False

# We run our current policy until the end of episode

while not done:

# Turn our state into a tensor (because nn uses tensors)
obs_tensor = torch.tensor(obs, dtype=torch.float32)

# Compute action probabilities under our policy

# Sample an action.
action_probs = policy(obs_tensor)

dist = torch.distributions.Categorical(action_probs)

action = dist.sample()

# Execute the action in the environment, collect reward, new state
obs, reward, terminated, truncated, _ = env.step(action.item())

# We need log probabilities and rewards to compute gradient, so lets save that

log_probs.append(dist.log_prob(action))

rewards . append (reward)

done = terminated or truncated

# We need to turn rewards into tensors before using them.
rewards = torch.tensor(rewards, dtype=torch.float32)

# Compute the loss to propagate the gradients

loss = -sum(log_probs)*sum(rewards)
optimizer.zero_grad()
loss.backward ()

optimizer.step()

if episode % 50 ==
print (f"Episode {episode}, return

{sum(rewards)}")
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2.3.3 Visualizing the Learned CartPole Policy
To play back the trained policy:

env = gym.make("CartPole-v1", render_mode="human")

for episode in range(5):

obs, _ = env.reset()

done = False

while not done:
obs_tensor = torch.tensor(obs, dtype=torch.float32)
action_probs = policy(obs_tensor)
action = torch.argmax(action_probs).item()
obs, reward, terminated, truncated, _ = env.step(action)
done = terminated or truncated

env.close()



Chapter 3

Optimism and Bellman
Equations

In the previous chapter, we ran the policy gradient algorithm on two environ-
ments: CartPole and Pong. We observed that finding the optimal policy was
much easier in CartPole than in Pong. This naturally raises the question: what
makes some RL problems easier than others?

By “easy,” we mean problems for which we can design algorithms that are ef-
ficient in both sample complexity (the amount of interaction required) and com-
putational complexity (the amount of computation, e.g., GPU hours, needed).

This chapter will focus on: when can we design sample efficient RL algo-
rithms? This chapter introduces two core algorithmic ideas in reinforcement
learning theory: optimism and bellman equations. These principles under-
lie many sample-efficient algorithms across various settings, including Linear
Bellman-Complete MDPs [5], Linear MDPs [6], Deterministic linear Q* [7], and
more. The first attempt to generalize these ideas was made in [8]. A broader
overview can be found in [9].

In this chapter, we focus on the simplest such setting—the linear setting—where
the optimal value functions V* and @* lie in a known linear function class.

Definition 3.1 (Linear V* and Q*). We assume that the optimal value func-
tions admit a known linear feature representation:

e Linear Q*: There exists an unknown parameter vector w* € R% and a
known feature map ¢ : S x A — R? such that

Q*(s,a) = (W, ¢(s,a)) for all (s,a) € S x A.

o Linear V*: There exists an unknown parameter vector 6* € R? and a
known feature map ¢ : S — R? such that

V*(s) = (0%, ¢(s)) forallseS.

16
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We use the same notation ¢ for both feature maps, with the meaning clear from
contert.

We study the problem of learning a near-optimal policy in the finite-horizon
linear setting, where the agent interacts with the environment and seeks a
sample-efficient algorithm: one that learns a good policy using as few episodes
as possible.

Definition 3.2 (Goal: Sample-Efficient Algorithm for Linear Setting). Let
g,0 € (0,1) be accuracy and confidence parameters. The goal is to design an
algorithm which, with probability at least 1 — §, outputs a policy & such that

Vﬁ—(So) > V*(So) — &,

where V* denotes the value of an optimal policy and sq is the starting state. The
algorithm is sample efficient if the number of environment interactions required
is polynomial in the feature dimension d, number of actions |A|, horizon H, and
parameters e, log 5 L.

3.1 Bellman Equation

A key observation behind our algorithm is the Bellman equation, which holds
for all state-action pairs (sp, ap):
Qh(sn,an) = E [+ Vi (sne1)] - (3.1)

sn+1~T(sn,an)
rh~R(sh,an)

This immediately implies:

E (@ (sn,an) = = Vilia (sng1)] = 0. (3.2)
shy1~T(sh,an)
ra~R(sh,an)
We are interested in analyzing this identity under the distribution induced
by a policy, which we define next.

Definition 3.3 (Trajectory Distribution d™). Let be a policy. The distribution
d7 denotes the marginal over (sp,ap,Th, Sh+1) at time h under policy w, with
the following sampling process:

e sg is the known starting state,
o a; ~ m(st), Sep1 ~ T(se,ar), and ry ~ R(s¢, ar).

We write d™ = {dj,...,d};_,} to denote the full set of marginals over the
trajectory.

Taking expectations in Equation (3.2) over any distribution on (s, ap), in-
cluding the trajectory distribution d™ induced by a policy 7, preserves the iden-
tity:

E [Q"(snsan) — 71 — Viha (sn41)] = 0. (3.3)

(81n,an T Sh+1)~d]
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For brevity, henceforth, we will use Eg4r to denote the above expectation. Finally,
note that given a policy =, it is straightforward to sample from d”™ by interacting
with the environment: simply run 7 for multiple episodes and collect the tuples
(Sh,@n,Th, She1) at each time step h.

3.2 Algorithm

We now present a sample-efficient algorithm that iteratively constructs policies
that are (a) optimistic, and (b) approximately satisfy Bellman equation on past
data. At each iteration ¢, the algorithm uses data collected under previous
policies my,...,m to construct a new policy my4; that maximizes estimated
value while ensuring that its Bellman residual (Equation (3.3)) is small under
the empirical trajectory distributions from earlier policies.

Let CZZ’“ denote the empirical distribution over nem, = poly(d, H) transitions
(Sh,@n,Th, She1) collected from executing policy 7. The number of samples
collected per policy nemp and the constraint parameter econs will be chosen
later in the analysis.

Algorithm 2: Optimistic Algorithm

{1} for t =1,2,...,Nrounds do
{2} Solve the following optimization problem:

max (0, #(so))

t—1 2 2

9
1. E —rp — (0 < —
st 30 o) == ot <

Here, ||0]||2, ||w]l2 < 1 are norm constrained and satisfy
(0, #(s)) = max,(w, ¢(s,a)) for all states s.

{3} Let 6;, w; be the resulting parameters. Define m; as the resulting
policy defined by m:(s) = argmax, (wy, ¢(s, a)).
{4} Execute m; for nemp episodes, and use the collected data to
H-1,

construct empirical distributions d™ = {df*} -1

{5} return the best policy m; observed so far.;

3.3 Optimization Constraint in Linear Form

We begin by rewriting the constraint in our optimization program using the
linear representations of the value functions. Recall that we denote the time-
indexed value functions as QF and V;7, where h € {0,..., H — 1}. However, to
keep notation light, we will suppress the dependence on h in the remainder of
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this proof, with the understanding that the analysis applies separately at each
time step.

At round ¢, let 6;, w; be the resulting parameters, and define m; as the re-
sulting policy defined by m(s) = argmax, (w¢, (s, a)). Define the concatenated
parameter and feature vectors:

W (me) = [wy, 0] € R*,
= d@ [¢(sn,an), —¢(sny1)] € R*

t
h

Ja
3
|

Here, recall the notation EdZt is shorthand for the expectation over samples

(Sh»an, snt1) ~ dy'. The expected Bellman optimality equation for a candidate
policy m; at time step h is:

d]]:;t [<wta ¢(Sha ah)> —Th — <0t7 ¢(Sh+1)>} (34)
= E [{we, ¢(sn, an)) = (01, 6(sn+1)) — @ (sns an) + V7" (sn41)]
=(W(m) — W(r"), X (7)), (3.5)

where the first equality uses the Bellman identity for the optimal policy (Equa-
tion (3.3)) to replace rp with Q*(sp,an) — V*(sp+1) in expectation.

3.4 Optimism: Bounding Regret

To analyze the regret, we relate the suboptimality of the current policy 7 to
the difference between its parameters and those of the optimal value functions.
The key idea is optimism: the algorithm selects 6, w; to maximize (6, ¢(so)),
which serves as an optimistic estimate of V™ (sg). Although this estimate may
be inaccurate, the algorithm proceeds by acting according to ;.

Lemma 3.4 (Regret Decomposition via Optimism). Let the policy m, and
vectors W (m;), X (m;) € R?? be as defined above. Then:

H-1

V*(s0) = V™ (s0) < D [(W(m) = W ("), Xa(m))|-

h=0

Proof. Throughout, we use that a, = argmax, (w;, ¢(sp,a)). The claim follows
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from:

V*(s0) — V™ (sp)
< (B, d(s0)) — V™ (s0) (follows from optimism)

= (wi, ¢(s0,00)) — E

H—1
Z Th‘| (since (0, ¢(s0)) = (wt, d(s0,a0)))
h=0

— 1:_01 dI;Et [(we, @(8hsan)) — 1 — (Wi, d(sh+1,an+1))]  (by telescoping sum)
H-1
- h=0 dI%‘ [(we, @(sns an)) —1h — (0, (snt1))]
(since {0y, p(sny1)) = (we, ¢(sn,an)))
< H-1 (W () — W(m™), Xn (7)) - (follows from Equation (3.5))
h=0

O

3.5 Exploration: Bounding the Number of Rounds

The final step is to bound how many rounds n,o,ungs are needed before the
algorithm identifies a policy 7 with small suboptimality. We provide a simplified
argument, which can be improved to obtain tighter bounds.

The key idea is that for large enough nemp, the empirical distribution JZ’“
concentrates around the true distribution d*. Then, from the regret decompo-
sition lemma above (Lemma 3.4), we know that if the residual term (W () —
W (n*), Xp(mk)) is zero for all h, then the policy 7y is optimal. Otherwise, a
nonzero residual indicates that m, adds a new constraint that helps eliminate a
portion of the hypothesis space.

More precisely, these constraints are linear in the difference vector W(m) —
W (r*), and each non-redundant policy introduces a constraint that is at least
e-independent (Definition 3.5) of the previous ones. Since the vector space has
finite dimension 2d, only a bounded number of such e-independent constraints
can exist. This implies that the algorithm can only generate a finite number
of meaningfully distinct (and suboptimal) policies before it must identify the
optimal one.

Thus, it suffices to analyze the following situation: how many times can it
happen that
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This question—how many times an e-independent constraint can arise—was
first analyzed by Russo and Van Roy [10].

Definition 3.5 (e-independence). Let Sy = {# € R? : ||f]]2 < 1}. We say
Xy € Sy is e-independent of sequence {x1, T2, ..., Tn_1} if there exists 6,0* € Sy
such that

i (0, z:) — <9*7$i>)2 < g?
=1
(<03xn> - <0*7I’n>)2 > 52

We now bound the number of such e-independent vectors that can appear
in a sequence.

Lemma 3.6 (Bound on Number of e-Independent Constraints). Let {x1,...,2,} C
Sq be a sequence such that each xy is e-independent of the previous vectors in
the sense of Definition 3.5. Then, the number n of such vectors is at most

r-ofem(?)

Proof. More generally, assume that ||zg||2 < By for all k, and that ||§ — §*||» <
2By. In our case, both By and By are 1.

Let V,, := 2" a2] + A for some regularization A = &2 /(2By)2. If x,, is e-
independent of the previous z1, . .., Z,—1, then there exists 6, 6* with ||0—6*||s <
2By such that:

n—1
Z (0 —0",2;))° <2, but  ((0—0%,2,))° > %

i=1
This implies:

n—1

5<{(9—9*)Txn:(9—9*)T (inxj> (0 —0") <e® and (9—9*)TI(9—9*)<(239)2}

=1

n—1
< max {pTx” pl <Z xw?) p<e? and p'Ip< (239)2}
p
i=1

n—1
< max{pTxn pl <Z T + AI) p < 252}
p i=1
= \/262||$n||v771
And therefore,

_ 1
H‘r’ﬂll\Q/;l = x'r—LrVn 13:” 2 5
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We now analyze the growth of det(V},) using the matrix determinant lemma:
det(V,,) = det(Vy1) (L + 20, V,, i 201)
3

Z det(Vn71> . 5

Iterating gives:

det(V,) > det(A) - (‘;’)"_1 _ M (‘Z)n_l .

On the other hand, since trace(V;,) < nt5 +d\, we apply the AM-GM inequal-

ity:
d B2 d
det(V,,) < (mc‘;(v’l)> < <nd¢’+A> .

Equating the lower and upper bounds on det(V},) gives:

n—1 2 d
3 nB
2\ <2> < <d¢ + )\)

Solving this inequality yields the desired bound:

B2B?
n:0<d-1og< 95 ¢>>




Chapter 4

Computational Complexity

In the previous chapter, we showed how to find an approximately optimal policy
in a sample-efficient manner—that is, by interacting with the transition and
reward functions at most polynomially many times in the feature dimension d
and horizon H. In this chapter, we show that despite the statistical problem
being easy, the computational problem is hard: no efficient algorithm exists for
solving the same problem under standard complexity assumptions.

4.1 Complexity Problems

Our proof is based on a reduction from the classical 3-SAT problem:

Definition 4.1 (3-SAT). Given a Boolean formula ¢ in conjunctive normal
form (CNF) with v variables and O(v) clauses, the goal is to determine whether
@ is satisfiable—that is, whether there exists an assignment w € {0,1}" such
that every clause in ¢ evaluates to True.

For example, the formula (x1 V 23 V 23) A (mx1 V 22 V 23) A (021 V 23 V
x4) is satisfiable. We now formally define the interaction model for the linear
reinforcement learning (RL) problem:

Definition 4.2 (Linear RL and Interaction Model). An algorithm is given ac-
cess to a deterministic finite-horizon MDP M with horizon H, and the following
oracles:

e Reward oracle: Given a state s and action a, returns a sample from
R(s,a).

e Transition oracle: Given a state s and action a, returns the next state
T(s,a).

e Feature oracle: Given a state s (or a state-action pair (s,a)), returns
the corresponding d-dimensional feature vector ¢(s) or ¢(s,a).

23
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Each oracle call has constant runtime, and all input/output sizes are polynomial
in the feature dimension d.

We assume that the optimal value functions @Q* and V* are linear in these
features (Definition 3.1). Our goal is to prove the following computational lower
bound for finding an approximate optimal policy:

Theorem 4.3. Unless NP = RP, there is no polynomial-time algorithm which,
given access to a deterministic MDP M with at least two actions and hori-
zon H = O(d), where the optimal value functions Q* and V* are linear in
d-dimensional features ¢ (Definition 3.1), outputs a policy 7 satisfying V™ >
V* —1/4 with constant probability.

We construct such MDPs from 3-SAT formulas in a way that an efficient
algorithm for solving the MDP would yield an efficient algorithm for solving
3-SAT.

4.2 Linear Infinite-Horizon MDP

To build intuition, we begin with an infinite-horizon deterministic MDP derived
from a CNF formula. Consider the example:

(Il Vo \/.Z‘g) A (—\xl Vxo \/l‘3) A\ (ﬂl‘l Vs \/31‘4) A (1‘1 Vo \/_\.’L‘3) AN (ﬂl‘l Vo \/—\xg)
We define an infinite-horizon MDP (whose unrolling is illustrated in Fig-
ure 4.1) as follows:

e Each state corresponds to a partial assignment w € {0,1}" of the SAT
variables. The root corresponds to the all-zero assignment.

e The process terminates when the agent reaches a pre-decided satisfying
assignment w*.

e From any state w, an unsatisfied clause is selected, and the agent chooses
among three actions: flipping one of the three variables in that clause.

e FEach action incurs a reward of —1.

Because each action has a reward of —1, the optimal policy minimizes the
path length to the satisfying assignment w*. This leads to the following:

Lemma 4.4. The optimal value functions Q* and V* are linear in w and w*.
Specifically, for a state s with assignment w:

V*(s) = —D(w,w"),

where D(w,w*) is the Hamming distance between w and w*. Since D(w,w*) =
1 (v—(w,w*)), it is linear in both w and w*. Moreover, Q*(s,a) = V*(T(s,a))—
1.

While conceptually clean, this construction is infinite-horizon. Truncating
the tree to make it finite-horizon would require inserting leaf rewards that de-
pend on w*, which cannot be simulated efficiently.
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(0,0,0,0)

—r1Vx2 VI3 T
(1,0,0,0)

x1 Vo Va3
(0,0,0,0)

(0,0,1,0)

Figure 4.1: Unrolling of an infinite-horizon MDP based on SAT clauses. Each
node corresponds to an assignment; actions flip variables in an unsatisfied clause.

4.3 Linear Finite-Horizon MDP

To address this, we define a finite-horizon MDP with carefully constructed leaf
rewards. Rewards are zero everywhere except at the leaves. At a leaf with
assignment w and depth [, the expected reward is:

Z+D(w,w*))r.

E[R(w,1)] = <1 S

This form ensures that the optimal value function has the same structure:

Lemma 4.5. The optimal value function at a state s with assignment w and
depth 1 is
I+ D(w,w*)\"
Vis)=(1- ———"-2) .
(s) ( H+wv
This function is a degree-r polynomial in the inner product (w,w*), and thus
linear in d = v"-dimensional features.

Sketch. See [11] for details. The greedy policy that flips variables to reduce
D(w,w*) by 1 per step (and thus increases [ by 1) maintains D(w,w*) + [ as
a constant. Since the reward is decreasing in this quantity, the greedy policy
is optimal, and the value function inherits the same functional form as the
reward. O

Suppose we truncate the tree at depth H = d = v". Then the maximum
reward at the final level is:

H " v " 2
1- = =00,
( H+v> <H+v> v

Since any algorithm restricted to polynomial time in d and H can reach only
poly(v") states, it will observe negligible reward at the leaves and gain no useful
information.

In conclusion, while statistically efficient algorithms exist under the assump-
tion that V* and Q* are linear in known features, computationally efficient
algorithms do not—unless NP = RP.
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