Realizable Learning is All You Need

Talk by: Gaurav Mahajan (UCSD)

Joint with:

Max Hopkins

Daniel Kane

Shachar Lovett

Overview

(1) Background

- Realizable PAC Learning
- Agnostic Learning
- Realizable \Longleftrightarrow Agnostic Learning
(2) The Reduction
- Algorithm and Analysis
- Application: Distribution Dependent Learning
- Application: General Loss Functions
(3) Beyond Agnostic Learning
- Property Generalization
- Application: Semi-Private Learning
(4) Open Problems!!

Table of Contents

(1) Background

- Realizable PAC Learning
- Agnostic Learning
- Realizable \Longleftrightarrow Agnostic Learning

2 The Reduction

- Algorithm and Analysis
- Application: Distribution Dependent Learning
- Application: General Loss Functions
(3) Beyond Agnostic Learning
- Property Generalization
- Application: Semi-Private Learning

4 Open Problems!!

Learning (Setup)

- Let X be a set (e.g. \mathbb{R}^{d})

Learning (Setup)

- Let X be a set (e.g. \mathbb{R}^{d})
- Let H be a family of binary classifiers (e.g. halfspaces)

Learning (Setup)

- Let X be a set (e.g. \mathbb{R}^{d})
- Let H be a family of binary classifiers (e.g. halfspaces)

Learning (Setup)

- Let X be a set (e.g. \mathbb{R}^{d})
- Let H be a family of binary classifiers (e.g. halfspaces)

- We will be interested in the "learnability" of classes (X, H)
- Given random labeled samples $(x, h(x))$, can we identify h ?

Probably Approximately Correct (PAC) Learning

- PAC-learning is a game between a "Learner" \mathcal{L} and "Adversary" \mathcal{A} :

Probably Approximately Correct (PAC) Learning

- PAC-learning is a game between a "Learner" \mathcal{L} and "Adversary" \mathcal{A} :
(1) First, \mathcal{A} secretly picks a distribution D over X, and $h \in H$

Probably Approximately Correct (PAC) Learning

- PAC-learning is a game between a "Learner" \mathcal{L} and "Adversary" \mathcal{A} :
(1) First, \mathcal{A} secretly picks a distribution D over X, and $h \in H$
(2) Second, \mathcal{L} draws labeled samples $(x, h(x))$ with $x \sim D$

Probably Approximately Correct (PAC) Learning

- PAC-learning is a game between a "Learner" \mathcal{L} and "Adversary" \mathcal{A} :
(1) First, \mathcal{A} secretly picks a distribution D over X, and $h \in H$
(2) Second, \mathcal{L} draws labeled samples $(x, h(x))$ with $x \sim D$
(3) Based on received samples S, \mathcal{L} outputs a guess for h

Probably Approximately Correct (PAC) Learning

- PAC-learning is a game between a "Learner" \mathcal{L} and "Adversary" \mathcal{A} :
(1) First, \mathcal{A} secretly picks a distribution D over X, and $h \in H$
(2) Second, \mathcal{L} draws labeled samples $(x, h(x))$ with $x \sim D$
(3) Based on received samples S, \mathcal{L} outputs a guess for h
- \mathcal{L} wins the game if their output $\mathcal{L}(S)$ is close to h :

Probably Approximately Correct (PAC) Learning

- PAC-learning is a game between a "Learner" \mathcal{L} and "Adversary" \mathcal{A} :
(1) First, \mathcal{A} secretly picks a distribution D over X, and $h \in H$
(2) Second, \mathcal{L} draws labeled samples $(x, h(x))$ with $x \sim D$
(3) Based on received samples S, \mathcal{L} outputs a guess for h
- \mathcal{L} wins the game if their output $\mathcal{L}(S)$ is close to h :
- \mathcal{L} has a winning strategy if they win whp for any choice of D, h

PAC Learning (Formal)

- Fix 'accuracy' and 'confidence' parameters $\varepsilon, \delta>0$
- PAC-learning is a game between a "Learner" \mathcal{L} and "Adversary" \mathcal{A} :
(1) First, \mathcal{A} secretly picks a distribution D over X, and $h \in H$
(2) Second, \mathcal{L} draws labeled samples $(x, h(x))$ with $x \sim D$
(3) Based on received samples S, \mathcal{L} outputs a guess for h
- \mathcal{L} wins the game if their output $\mathcal{L}(S)$ is close to h :
- \mathcal{L} has a winning strategy if they win whp for any choice of D, h :

PAC Learning (Formal)

- Fix 'accuracy' and 'confidence' parameters $\varepsilon, \delta>0$
- PAC-learning is a game between a "Learner" \mathcal{L} and "Adversary" \mathcal{A} :
(1) First, \mathcal{A} secretly picks a distribution D over X, and $h \in H$
(2) Second, \mathcal{L} draws labeled samples $(x, h(x))$ with $x \sim D$
(3) Based on received samples S, \mathcal{L} outputs a guess for h
- \mathcal{L} wins the game if their output $\mathcal{L}(S)$ is close to h :

$$
\operatorname{err}_{D, h}(\mathcal{L}(S)):=\operatorname{Pr}_{x \sim D}[\mathcal{L}(S)(x) \neq h(x)] \leq \varepsilon
$$

- \mathcal{L} has a winning strategy if they win whp for any choice of D, h :

PAC Learning (Formal)

- Fix 'accuracy' and 'confidence' parameters $\varepsilon, \delta>0$
- PAC-learning is a game between a "Learner" \mathcal{L} and "Adversary" \mathcal{A} :
(1) First, \mathcal{A} secretly picks a distribution D over X, and $h \in H$
(2) Second, \mathcal{L} draws labeled samples $(x, h(x))$ with $x \sim D$
(3) Based on received samples S, \mathcal{L} outputs a guess for h
- \mathcal{L} wins the game if their output $\mathcal{L}(S)$ is close to h :

$$
\operatorname{err}_{D, h}(\mathcal{L}(S)):=\operatorname{Pr}_{x \sim D}[\mathcal{L}(S)(x) \neq h(x)] \leq \varepsilon
$$

- \mathcal{L} has a winning strategy if they win whp for any choice of D, h :

$$
\forall D, h: \quad \operatorname{Pr}_{S}\left[\operatorname{err}_{D, h}(\mathcal{L}(S)) \leq \varepsilon\right] \geq 1-\delta
$$

PAC Learning (Formal)

- Fix 'accuracy' and 'confidence' parameters $\varepsilon, \delta>0$
- PAC-learning is a game between a "Learner" \mathcal{L} and "Adversary" \mathcal{A} :
(1) First, \mathcal{A} secretly picks a distribution D over X, and $h \in H$
(2) Second, \mathcal{L} draws labeled samples $(x, h(x))$ with $x \sim D$
(3) Based on received samples S, \mathcal{L} outputs a guess for h
- \mathcal{L} wins the game if their output $\mathcal{L}(S)$ is close to h :

$$
\operatorname{err}_{D, h}(\mathcal{L}(S)):=\operatorname{Pr}_{x \sim D}[\mathcal{L}(S)(x) \neq h(x)] \leq \varepsilon
$$

- \mathcal{L} has a winning strategy if they win whp for any choice of D, h :

$$
\forall D, h: \quad \operatorname{Pr}_{S}\left[\operatorname{err}_{D, h}(\mathcal{L}(S)) \leq \varepsilon\right] \geq 1-\delta
$$

Definition (Realizable PAC-Learning)

(X, H) is Realizably learnable with "sample complexity" $n(\varepsilon, \delta)$ if $\forall \varepsilon, \delta>0, \mathcal{L}$ has a winning strategy using at most $n(\varepsilon, \delta)$ samples

Agnostic Learning (Informal)

- Realizable learning forces the adversary to pick from H

Agnostic Learning (Informal)

- Realizable learning forces the adversary to pick from H
- A more realistic model drops this assumption:

Agnostic Learning (Informal)

- Realizable learning forces the adversary to pick from H
- A more realistic model drops this assumption:
- The adversary can pick any labeling at all...
- but the learner only needs to be close to the best hypothesis in H

Agnostic Learning (Informal)

- Realizable learning forces the adversary to pick from H
- A more realistic model drops this assumption:
- The adversary can pick any labeling at all...
- but the learner only needs to be close to the best hypothesis in H
- This model is called "Agnostic" learning:

Agnostic Learning (Informal)

- Realizable learning forces the adversary to pick from H
- A more realistic model drops this assumption:
- The adversary can pick any labeling at all...
- but the learner only needs to be close to the best hypothesis in H
- This model is called "Agnostic" learning:
(1) First, \mathcal{A} picks a Joint Distribution \bar{D} over $X \times\{0,1\}$

Agnostic Learning (Informal)

- Realizable learning forces the adversary to pick from H
- A more realistic model drops this assumption:
- The adversary can pick any labeling at all...
- but the learner only needs to be close to the best hypothesis in H
- This model is called "Agnostic" learning:
(1) First, \mathcal{A} picks a Joint Distribution \bar{D} over $X \times\{0,1\}$
(2) Second, \mathcal{L} draws labeled samples $(x, y) \sim \bar{D}$

Agnostic Learning (Informal)

- Realizable learning forces the adversary to pick from H
- A more realistic model drops this assumption:
- The adversary can pick any labeling at all...
- but the learner only needs to be close to the best hypothesis in H
- This model is called "Agnostic" learning:
(1) First, \mathcal{A} picks a Joint Distribution \bar{D} over $X \times\{0,1\}$
(2) Second, \mathcal{L} draws labeled samples $(x, y) \sim \bar{D}$
(3) Based on the received sample \mathbf{S}, \mathcal{L} outputs a guess for closest in H to \bar{D}

Agnostic Learning (Informal)

- Realizable learning forces the adversary to pick from H
- A more realistic model drops this assumption:
- The adversary can pick any labeling at all...
- but the learner only needs to be close to the best hypothesis in H
- This model is called "Agnostic" learning:
(1) First, \mathcal{A} picks a Joint Distribution \bar{D} over $X \times\{0,1\}$
(2) Second, \mathcal{L} draws labeled samples $(x, y) \sim \bar{D}$
(3) Based on the received sample \mathbf{S}, \mathcal{L} outputs a guess for closest in H to \bar{D}
- \mathcal{L} wins if their output $\mathcal{L}(S)$ is a good guess for \bar{D}

Agnostic Learning (Informal)

- Realizable learning forces the adversary to pick from H
- A more realistic model drops this assumption:
- The adversary can pick any labeling at all...
- but the learner only needs to be close to the best hypothesis in H
- This model is called "Agnostic" learning:
(1) First, \mathcal{A} picks a Joint Distribution \bar{D} over $X \times\{0,1\}$
(2) Second, \mathcal{L} draws labeled samples $(x, y) \sim \bar{D}$
(3) Based on the received sample \mathbf{S}, \mathcal{L} outputs a guess for closest in H to \bar{D}
- \mathcal{L} wins if their output $\mathcal{L}(S)$ is a good guess for \bar{D}
- \mathcal{L} has a winning strategy if they win whp for any choice of \bar{D}

Agnostic Learning (Formalized)

- Fix an 'accuracy' and 'confidence' parameters $\varepsilon, \delta>0$
- This model is called "Agnostic" learning:
(1) First, \mathcal{A} picks a Joint Distribution \bar{D} over $X \times\{0,1\}$
(2) Second, \mathcal{L} draws labeled samples $(x, y) \sim \bar{D}$
(3) Based on the received sample S, \mathcal{L} outputs a guess for closest in H to \bar{D}
- \mathcal{L} wins if their output $\mathcal{L}(S)$ is a good guess for \bar{D}
- \mathcal{L} has a winning strategy if they win whp for any choice of \bar{D}

Agnostic Learning (Formalized)

- Fix an 'accuracy' and 'confidence' parameters $\varepsilon, \delta>0$
- This model is called "Agnostic" learning:
(1) First, \mathcal{A} picks a Joint Distribution \bar{D} over $X \times\{0,1\}$
(2) Second, \mathcal{L} draws labeled samples $(x, y) \sim \bar{D}$
(3) Based on the received sample S, \mathcal{L} outputs a guess for closest in H to \bar{D}
- \mathcal{L} wins if their output $\mathcal{L}(S)$ is a good guess for \bar{D} :

$$
\begin{aligned}
\operatorname{err}_{\bar{D}}(\mathcal{L}(S)): & : \operatorname{Pr}_{(x, y) \sim \bar{D}}[\mathcal{L}(S)(x) \neq y] \leq O P T+\varepsilon \\
O P T & :=\min _{h \in H}\left\{\operatorname{err}_{\bar{D}}(h)\right\}
\end{aligned}
$$

- \mathcal{L} has a winning strategy if they win whp for any choice of \bar{D}

Agnostic Learning (Formalized)

- Fix an 'accuracy' and 'confidence' parameters $\varepsilon, \delta>0$
- This model is called "Agnostic" learning:
(1) First, \mathcal{A} picks a Joint Distribution \bar{D} over $X \times\{0,1\}$
(2) Second, \mathcal{L} draws labeled samples $(x, y) \sim \bar{D}$
(3) Based on the received sample S, \mathcal{L} outputs a guess for closest in H to \bar{D}
- \mathcal{L} wins if their output $\mathcal{L}(S)$ is a good guess for \bar{D} :

$$
\begin{aligned}
\operatorname{err}_{\bar{D}}(\mathcal{L}(S)): & : \operatorname{Pr}_{(x, y) \sim \bar{D}}[\mathcal{L}(S)(x) \neq y] \leq O P T+\varepsilon \\
O P T & :=\min _{h \in H}\left\{\operatorname{err}_{\bar{D}}(h)\right\}
\end{aligned}
$$

- \mathcal{L} has a winning strategy if they win whp for any choice of \bar{D}

$$
\forall \bar{D}: \quad \operatorname{Pr}_{S \sim \bar{D}}\left[\operatorname{err}_{\bar{D}}(\mathcal{L}(S)) \leq O P T+\varepsilon\right] \geq 1-\delta
$$

Agnostic Learning (Formalized)

- Fix an 'accuracy' and 'confidence' parameters $\varepsilon, \delta>0$
- This model is called "Agnostic" learning:
(1) First, \mathcal{A} picks a Joint Distribution \bar{D} over $X \times\{0,1\}$
(2) Second, \mathcal{L} draws labeled samples $(x, y) \sim \bar{D}$
(3) Based on the received sample S, \mathcal{L} outputs a guess for closest in H to \bar{D}
- \mathcal{L} wins if their output $\mathcal{L}(S)$ is a good guess for \bar{D} :

$$
\begin{aligned}
\operatorname{err}_{\bar{D}}(\mathcal{L}(S)) & :=\operatorname{Pr}_{(x, y) \sim \bar{D}}[\mathcal{L}(S)(x) \neq y] \leq O P T+\varepsilon \\
O P T & :=\min _{h \in H}\left\{\operatorname{err}_{\bar{D}}(h)\right\}
\end{aligned}
$$

- \mathcal{L} has a winning strategy if they win whp for any choice of \bar{D}

$$
\forall \bar{D}: \quad \operatorname{Pr}_{S \sim \bar{D}}\left[\operatorname{err}_{\bar{D}}(\mathcal{L}(S)) \leq O P T+\varepsilon\right] \geq 1-\delta
$$

Definition (Agnostic PAC-Learning)

(X, H) is Agnostically learnable with "sample complexity" $m(\varepsilon, \delta)$ if $\forall \varepsilon, \delta>0, \mathcal{L}$ has a winning strategy using at most $m(\varepsilon, \delta)$ samples

Equivalence of Realizable and Agnostic Learning

- Agnostic learning seems much harder than Realizable learning...

Equivalence of Realizable and Agnostic Learning

- Agnostic learning seems much harder than Realizable learning...
- Adversary has strictly more power!

Equivalence of Realizable and Agnostic Learning

- Agnostic learning seems much harder than Realizable learning...
- Adversary has strictly more power!
- But it turns out they're equivalent!

Equivalence of Realizable and Agnostic Learning

- Agnostic learning seems much harder than Realizable learning...
- Adversary has strictly more power!
- But it turns out they're equivalent!

Theorem (Blumer, Ehrenfeucht, Haussler, Warmuth '89, Haussler '92)
(X, H) is Realizably learnable $\Longleftrightarrow(X, H)$ is Agnostically learnable

Equivalence of Realizable and Agnostic Learning

- Agnostic learning seems much harder than Realizable learning...
- Adversary has strictly more power!
- But it turns out they're equivalent!

Theorem (Blumer, Ehrenfeucht, Haussler, Warmuth '89, Haussler '92)
(X, H) is Realizably learnable $\Longleftrightarrow(X, H)$ is Agnostically learnable

- Proof relies on uniform convergence
- (Empirical error approaches true error for all $h \in H$ simultaneously)

Equivalence of Realizable and Agnostic Learning

- Agnostic learning seems much harder than Realizable learning...
- Adversary has strictly more power!
- But it turns out they're equivalent!

Theorem (Blumer, Ehrenfeucht, Haussler, Warmuth '89, Haussler '92)

(X, H) is Realizably learnable $\Longleftrightarrow(X, H)$ is Agnostically learnable

- Proof relies on uniform convergence
- (Empirical error approaches true error for all $h \in H$ simultaneously)
- Unfortunately, uniform convergence fails beyond the PAC-model
- e.g. distribution-dependent learning; general loss functions...

Main Question

Is the equivalence of the realizable and agnostic models a fundamental property of learnability?

Main Question

Is the equivalence of the realizable and agnostic models a fundamental property of learnability?

- Despite no uniform convergence, equivalence always seems to hold!
- Distribution-dependent learning [BI91]
- Regression [BLW96]
- Private learning [BNS14]
- Multi-class learning [DMY16]
- Robust learning [MHS19]
- Semi-private learning [ABM19]
- Private prediction [DF20]
- Stable learning [DF20]
- Partial learning [AHHM21]

Main Question

Is the equivalence of the realizable and agnostic models a fundamental property of learnability?

- Despite no uniform convergence, equivalence always seems to hold!
- Distribution-dependent learning [BI91]
- Regression [BLW96]
- Private learning [BNS14]
- Multi-class learning [DMY16]
- Robust learning [MHS19]
- Semi-private learning [ABM19]
- Private prediction [DF20]
- Stable learning [DF20]
- Partial learning [AHHM21]

Can we explain this phenomenon more generally?

Table of Contents

(1) Background

- Realizable PAC Learning
- Agnostic Learning
- Realizable \Longleftrightarrow Agnostic Learning
(2) The Reduction
- Algorithm and Analysis
- Application: Distribution Dependent Learning
- Application: General Loss Functions
(3) Beyond Agnostic Learning
- Property Generalization
- Application: Semi-Private Learning

A Direct Reduction in Two Steps

- Let \mathcal{L} be a realizable learner for H on $n(\varepsilon, \delta)$ samples

A Direct Reduction in Two Steps

- Let \mathcal{L} be a realizable learner for H on $n(\varepsilon, \delta)$ samples
- We'll build an agnostic learner for H in two main steps:

A Direct Reduction in Two Steps

- Let \mathcal{L} be a realizable learner for H on $n(\varepsilon, \delta)$ samples
- We'll build an agnostic learner for H in two main steps:
(1) Step 1: Build a "cover" of H

A Direct Reduction in Two Steps

- Let \mathcal{L} be a realizable learner for H on $n(\varepsilon, \delta)$ samples
- We'll build an agnostic learner for H in two main steps:
(1) Step 1: Build a "cover" of H
- Using unlabeled samples and the learner $\mathcal{L} \ldots$
- Construct a small (finite) subset that "approximates" H

A Direct Reduction in Two Steps

- Let \mathcal{L} be a realizable learner for H on $n(\varepsilon, \delta)$ samples
- We'll build an agnostic learner for H in two main steps:
(1) Step 1: Build a "cover" of H
- Using unlabeled samples and the learner $\mathcal{L} \ldots$
- Construct a small (finite) subset that "approximates" H
(2) Step 2: Learn the cover

A Direct Reduction in Two Steps

- Let \mathcal{L} be a realizable learner for H on $n(\varepsilon, \delta)$ samples
- We'll build an agnostic learner for H in two main steps:
(1) Step 1: Build a "cover" of H
- Using unlabeled samples and the learner \mathcal{L}...
- Construct a small (finite) subset that "approximates" H
(2) Step 2: Learn the cover
- Using labeled samples, output a good hypothesis in the cover

Step 1: Non-Uniform Covering

- A set C is an ε-cover for (D, H)

Step 1: Non-Uniform Covering

- A set C is an ε-cover for (D, H) if for every $h \in H$, there exists $h^{\prime} \in C$ such that

Step 1: Non-Uniform Covering

- A set C is an ε-cover for (D, H) if for every $h \in H$, there exists $h^{\prime} \in C$ such that h^{\prime} is close to h under D

Step 1: Non-Uniform Covering

- A set C is an ε-cover for (D, H) if for every $h \in H$, there exists $h^{\prime} \in C$ such that
h^{\prime} is close to h under D

$$
\forall h \in H \exists h^{\prime} \in C: \operatorname{err}_{D, h}\left(h^{\prime}\right) \leq \varepsilon
$$

Step 1: Non-Uniform Covering

- A set C is an ε-cover for (D, H) if for every $h \in H$, there exists $h^{\prime} \in C$ such that h^{\prime} is close to h under D

$$
\forall h \in H \exists h^{\prime} \in C: \operatorname{err}_{D, h}\left(h^{\prime}\right) \leq \varepsilon
$$

- We instead construct a a non-uniform (ε, δ)-cover for (D, H)

Step 1: Non-Uniform Covering

- A set C is an ε-cover for (D, H) if for every $h \in H$, there exists $h^{\prime} \in C$ such that h^{\prime} is close to h under D

$$
\forall h \in H \exists h^{\prime} \in C: \operatorname{err}_{D, h}\left(h^{\prime}\right) \leq \varepsilon
$$

- We instead construct a a non-uniform (ε, δ)-cover for (D, H) a finite set C with the following guarantee:

Step 1: Non-Uniform Covering

- A set C is an ε-cover for (D, H) if for every $h \in H$, there exists $h^{\prime} \in C$ such that h^{\prime} is close to h under D

$$
\forall h \in H \exists h^{\prime} \in C: \operatorname{err}_{D, h}\left(h^{\prime}\right) \leq \varepsilon
$$

- We instead construct a a non-uniform (ε, δ)-cover for (D, H) a finite set C with the following guarantee: for every fixed hypothesis $h \in H$,

Step 1: Non-Uniform Covering

- A set C is an ε-cover for (D, H) if for every $h \in H$, there exists $h^{\prime} \in C$ such that h^{\prime} is close to h under D

$$
\forall h \in H \exists h^{\prime} \in C: \operatorname{err}_{D, h}\left(h^{\prime}\right) \leq \varepsilon
$$

- We instead construct a a non-uniform (ε, δ)-cover for (D, H) a finite set C with the following guarantee: for every fixed hypothesis $h \in H$, C contains h^{\prime} close to h with probability $1-\delta$

Step 1: Non-Uniform Covering

- A set C is an ε-cover for (D, H) if for every $h \in H$, there exists $h^{\prime} \in C$ such that h^{\prime} is close to h under D

$$
\forall h \in H \exists h^{\prime} \in C: \operatorname{err}_{D, h}\left(h^{\prime}\right) \leq \varepsilon
$$

- We instead construct a a non-uniform (ε, δ)-cover for (D, H) a finite set C with the following guarantee: for every fixed hypothesis $h \in H$, C contains h^{\prime} close to h with probability $1-\delta$

$$
\forall h \in H \quad \underset{C}{\operatorname{Pr}}\left[\exists h^{\prime} \in C: \operatorname{err}_{D, h}\left(h^{\prime}\right) \leq \varepsilon\right] \geq 1-\delta
$$

Step 1: Non-Uniform Covering

- A set C is an ε-cover for (D, H) if for every $h \in H$, there exists $h^{\prime} \in C$ such that h^{\prime} is close to h under D

$$
\forall h \in H \exists h^{\prime} \in C: \operatorname{err}_{D, h}\left(h^{\prime}\right) \leq \varepsilon
$$

- We instead construct a a non-uniform (ε, δ)-cover for (D, H) a finite set C with the following guarantee: for every fixed hypothesis $h \in H$, C contains h^{\prime} close to h with probability $1-\delta$

$$
\forall h \in H \quad \underset{C}{\operatorname{Pr}}\left[\exists h^{\prime} \in C: \operatorname{err}_{D, h}\left(h^{\prime}\right) \leq \varepsilon\right] \geq 1-\delta
$$

- Note this does not mean C is an ε-cover for (D, H) with high probability!

Step 1: Non-Uniform Covering

- A set C is an ε-cover for (D, H) if for every $h \in H$, there exists $h^{\prime} \in C$ such that h^{\prime} is close to h under D

$$
\forall h \in H \exists h^{\prime} \in C: \operatorname{err}_{D, h}\left(h^{\prime}\right) \leq \varepsilon
$$

- We instead construct a a non-uniform (ε, δ)-cover for (D, H) a finite set C with the following guarantee: for every fixed hypothesis $h \in H$, C contains h^{\prime} close to h with probability $1-\delta$

$$
\forall h \in H \quad \operatorname{Pr}\left[\exists h^{\prime} \in C: \operatorname{err}_{D, h}\left(h^{\prime}\right) \leq \varepsilon\right] \geq 1-\delta .
$$

- Note this does not mean C is an ε-cover for (D, H) with high probability!
- C is likely to miss some hypotheses each time

Step 1: Non-Uniform Covering

- A set C is an ε-cover for (D, H)
if for every $h \in H$, there exists $h^{\prime} \in C$ such that h^{\prime} is close to h under D

$$
\forall h \in H \exists h^{\prime} \in C: \operatorname{err}_{D, h}\left(h^{\prime}\right) \leq \varepsilon
$$

- We instead construct a a non-uniform (ε, δ)-cover for (D, H) a finite set C with the following guarantee: for every fixed hypothesis $h \in H$, C contains h^{\prime} close to h with probability $1-\delta$

$$
\forall h \in H \quad \operatorname{Pr}\left[\exists h^{\prime} \in C: \operatorname{err}_{D, h}\left(h^{\prime}\right) \leq \varepsilon\right] \geq 1-\delta .
$$

- Note this does not mean C is an ε-cover for (D, H) with high probability!
- C is likely to miss some hypotheses each time
- Covering all hypotheses simultaneously requires additional samples

Step 2: Non-Uniform Covering \rightarrow Agnostic Learning

- Recall Adversary picks joint distribution $\bar{D}\left(w /\right.$ marginal $\left.\bar{D}_{X}\right)$

Step 2: Non-Uniform Covering \rightarrow Agnostic Learning

- Recall Adversary picks joint distribution \bar{D} (w/ marginal \bar{D}_{X})
- Why care about bounded non-uniform covers?
- For every fixed $h \in H, C$ contains h^{\prime} close to h whp

Step 2: Non-Uniform Covering \rightarrow Agnostic Learning

- Recall Adversary picks joint distribution \bar{D} (w/marginal \bar{D}_{X})
- Why care about bounded non-uniform covers?
- For every fixed $h \in H, C$ contains h^{\prime} close to h whp
- This is true for $h_{O P T}$, the optimal hypothesis! $\left(\operatorname{err}_{\bar{D}}\left(h_{O P T}\right)=O P T\right)$

Step 2: Non-Uniform Covering \rightarrow Agnostic Learning

- Recall Adversary picks joint distribution \bar{D} (w/marginal \bar{D}_{X})
- Why care about bounded non-uniform covers?
- For every fixed $h \in H, C$ contains h^{\prime} close to h whp
- This is true for $h_{O P T}$, the optimal hypothesis! $\left(\operatorname{err}_{\bar{D}}\left(h_{O P T}\right)=O P T\right)$
- In other words, C probably contains h^{*} close to $h_{O P T}$ satisfying:

$$
\operatorname{Pr}_{x \sim \bar{D}_{X}}\left[h^{*}(x) \neq h_{O P T}(x)\right] \leq \varepsilon / 2
$$

Step 2: Non-Uniform Covering \rightarrow Agnostic Learning

- Recall Adversary picks joint distribution \bar{D} (w/marginal \bar{D}_{X})
- Why care about bounded non-uniform covers?
- For every fixed $h \in H, C$ contains h^{\prime} close to h whp
- This is true for $h_{O P T}$, the optimal hypothesis! $\left(\operatorname{err}_{\bar{D}}\left(h_{O P T}\right)=O P T\right)$
- In other words, C probably contains h^{*} close to $h_{O P T}$ satisfying:

$$
\operatorname{Pr}_{x \sim \bar{D}_{X}}\left[h^{*}(x) \neq h_{O P T}(x)\right] \leq \varepsilon / 2 \Longrightarrow \operatorname{err}_{\bar{D}}\left(h^{*}\right) \leq O P T+\varepsilon / 2
$$

Step 2: Non-Uniform Covering \rightarrow Agnostic Learning

- Recall Adversary picks joint distribution \bar{D} (w/marginal \bar{D}_{X})
- Why care about bounded non-uniform covers?
- For every fixed $h \in H, C$ contains h^{\prime} close to h whp
- This is true for $h_{O P T}$, the optimal hypothesis! $\left(\operatorname{err}_{\bar{D}}\left(h_{O P T}\right)=O P T\right)$
- In other words, C probably contains h^{*} close to $h_{O P T}$ satisfying:

$$
\operatorname{Pr}_{x \sim \bar{D}_{X}}\left[h^{*}(x) \neq h_{O P T}(x)\right] \leq \varepsilon / 2 \Longrightarrow \operatorname{err}_{\bar{D}}\left(h^{*}\right) \leq O P T+\varepsilon / 2
$$

- Now if we can agnostically learn C to $\varepsilon / 2$ error, we get $h_{o u t}$:

$$
\operatorname{err}_{\bar{D}}\left(h_{\text {out }}\right) \leq O P T+\varepsilon
$$

Step 2: Non-Uniform Covering \rightarrow Agnostic Learning

- Recall Adversary picks joint distribution \bar{D} (w/marginal \bar{D}_{X})
- Why care about bounded non-uniform covers?
- For every fixed $h \in H, C$ contains h^{\prime} close to h whp
- This is true for $h_{O P T}$, the optimal hypothesis! $\left(\operatorname{err}_{\bar{D}}\left(h_{O P T}\right)=O P T\right)$
- In other words, C probably contains h^{*} close to $h_{O P T}$ satisfying:

$$
\operatorname{Pr}_{x \sim \bar{D}_{X}}\left[h^{*}(x) \neq h_{O P T}(x)\right] \leq \varepsilon / 2 \Longrightarrow \operatorname{err}_{\bar{D}}\left(h^{*}\right) \leq O P T+\varepsilon / 2
$$

- Now if we can agnostically learn C to $\varepsilon / 2$ error, we get $h_{\text {out }}$:

$$
\operatorname{err}_{\bar{D}}\left(h_{\text {out }}\right) \leq O P T+\varepsilon
$$

- Since C is finite, we can use Empirical Risk Minimization:
- For any fixed $h \in H$, empirical error approaches true error
- Union bounding over C, true for all $h \in C$ simultaneously

Step 1(b): Realizable Learning \rightarrow Non-Uniform Covering

- So how can we build a bounded non-uniform $(\varepsilon / 2, \delta / 2)$-cover?

Step 1(b): Realizable Learning \rightarrow Non-Uniform Covering

- So how can we build a bounded non-uniform ($\varepsilon / 2, \delta / 2$)-cover?
- It turns out realizable learning is all you need!

Step 1(b): Realizable Learning \rightarrow Non-Uniform Covering

- So how can we build a bounded non-uniform $(\varepsilon / 2, \delta / 2)$-cover?
- It turns out realizable learning is all you need!
- Consider the following two-step algorithm for constructing C :

Step 1(b): Realizable Learning \rightarrow Non-Uniform Covering

- So how can we build a bounded non-uniform $(\varepsilon / 2, \delta / 2)$-cover?
- It turns out realizable learning is all you need!
- Consider the following two-step algorithm for constructing C :
(1) Draw an unlabeled sample $S_{U} \sim \bar{D}_{X}^{n(\varepsilon / 2, \delta / 2)}$

Step 1(b): Realizable Learning \rightarrow Non-Uniform Covering

- So how can we build a bounded non-uniform $(\varepsilon / 2, \delta / 2)$-cover?
- It turns out realizable learning is all you need!
- Consider the following two-step algorithm for constructing C :
(1) Draw an unlabeled sample $S_{U} \sim \bar{D}_{X}^{n(\varepsilon / 2, \delta / 2)}$
(2) Run \mathcal{L} on all possible labelings of S_{U} to get:

$$
C:=\left\{\mathcal{L}\left(S_{U}, h\left(S_{U}\right)\right): h \in H\right\}
$$

Step 1(b): Realizable Learning \rightarrow Non-Uniform Covering

- So how can we build a bounded non-uniform $(\varepsilon / 2, \delta / 2)$-cover?
- It turns out realizable learning is all you need!
- Consider the following two-step algorithm for constructing C :
(1) Draw an unlabeled sample $S_{U} \sim \bar{D}_{X}^{n(\varepsilon / 2, \delta / 2)}$
(2) Run \mathcal{L} on all possible labelings of S_{U} to get:

$$
C:=\left\{\mathcal{L}\left(S_{U}, h\left(S_{U}\right)\right): h \in H\right\}
$$

- Claim 1: $|C|<\infty$

Step 1(b): Realizable Learning \rightarrow Non-Uniform Covering

- So how can we build a bounded non-uniform $(\varepsilon / 2, \delta / 2)$-cover?
- It turns out realizable learning is all you need!
- Consider the following two-step algorithm for constructing C :
(1) Draw an unlabeled sample $S_{U} \sim \bar{D}_{X}^{n(\varepsilon / 2, \delta / 2)}$
(2) Run \mathcal{L} on all possible labelings of S_{U} to get:

$$
C:=\left\{\mathcal{L}\left(S_{U}, h\left(S_{U}\right)\right): h \in H\right\}
$$

- Claim 1: $|C|<\infty$
- There are at most $2^{\left|S_{U}\right|}$ labelings of S_{U}

Step 1(b): Realizable Learning \rightarrow Non-Uniform Covering

- So how can we build a bounded non-uniform $(\varepsilon / 2, \delta / 2)$-cover?
- It turns out realizable learning is all you need!
- Consider the following two-step algorithm for constructing C :
(1) Draw an unlabeled sample $S_{U} \sim \bar{D}_{X}^{n(\varepsilon / 2, \delta / 2)}$
(2) Run \mathcal{L} on all possible labelings of S_{U} to get:

$$
C:=\left\{\mathcal{L}\left(S_{U}, h\left(S_{U}\right)\right): h \in H\right\}
$$

- Claim 1: $|C|<\infty$
- There are at most $2^{\left|S_{U}\right|}$ labelings of S_{U}
- Claim 2: C is a Non-Uniform ($\varepsilon / 2, \delta / 2$)-cover:

Step 1(b): Realizable Learning \rightarrow Non-Uniform Covering

- So how can we build a bounded non-uniform $(\varepsilon / 2, \delta / 2)$-cover?
- It turns out realizable learning is all you need!
- Consider the following two-step algorithm for constructing C :
(1) Draw an unlabeled sample $S_{U} \sim \bar{D}_{X}^{n(\varepsilon / 2, \delta / 2)}$
(2) Run \mathcal{L} on all possible labelings of S_{U} to get:

$$
C:=\left\{\mathcal{L}\left(S_{U}, h\left(S_{U}\right)\right): h \in H\right\}
$$

- Claim 1: $|C|<\infty$
- There are at most $2^{\left|S_{U}\right|}$ labelings of S_{U}
- Claim 2: C is a Non-Uniform ($\varepsilon / 2, \delta / 2$)-cover:
- Fix any $h \in H$, realizable learning promises that:

$$
\operatorname{Pr}_{S_{U} \sim \bar{D}_{X}^{n}}\left[\operatorname{err}_{\bar{D}, h}\left(\mathcal{L}\left(S_{U}, h\left(S_{U}\right)\right)\right) \leq \varepsilon / 2\right] \geq 1-\delta / 2
$$

Step 1(b): Realizable Learning \rightarrow Non-Uniform Covering

- So how can we build a bounded non-uniform $(\varepsilon / 2, \delta / 2)$-cover?
- It turns out realizable learning is all you need!
- Consider the following two-step algorithm for constructing C :
(1) Draw an unlabeled sample $S_{U} \sim \bar{D}_{X}^{n(\varepsilon / 2, \delta / 2)}$
(2) Run \mathcal{L} on all possible labelings of S_{U} to get:

$$
C:=\left\{\mathcal{L}\left(S_{U}, h\left(S_{U}\right)\right): h \in H\right\}
$$

- Claim 1: $|C|<\infty$
- There are at most $2^{\left|S_{U}\right|}$ labelings of S_{U}
- Claim 2: C is a Non-Uniform ($\varepsilon / 2, \delta / 2$)-cover:
- Fix any $h \in H$, realizable learning promises that:

$$
\operatorname{Pr}_{S_{U} \sim \bar{D}_{X}^{n}}\left[\operatorname{err}_{\bar{D}, h}\left(\mathcal{L}\left(S_{U}, h\left(S_{U}\right)\right)\right) \leq \varepsilon / 2\right] \geq 1-\delta / 2
$$

- C contains $\mathcal{L}\left(S_{U}, h\left(S_{U}\right)\right)$ for each $h \in H$, so we're done!

Putting it All Together

- Let's review the full algorithm:

Putting it All Together

- Let's review the full algorithm:
- Adversary picks joint distribution $\bar{D}\left(\mathrm{w} /\right.$ marginal $\left.\bar{D}_{X}\right)$

Putting it All Together

- Let's review the full algorithm:
- Adversary picks joint distribution $\bar{D}\left(\mathrm{w} /\right.$ marginal $\left.\bar{D}_{X}\right)$
- Given a realizable learner $\mathcal{L} \mathrm{w} /$ sample complexity $n(\varepsilon, \delta)$ we...

Putting it All Together

- Let's review the full algorithm:
- Adversary picks joint distribution $\bar{D}\left(\mathrm{w} /\right.$ marginal $\left.\bar{D}_{X}\right)$
- Given a realizable learner $\mathcal{L} \mathrm{w} /$ sample complexity $n(\varepsilon, \delta)$ we...
(1) Step 1: Build a Non-Uniform Cover

Putting it All Together

- Let's review the full algorithm:
- Adversary picks joint distribution \bar{D} (w/ marginal \bar{D}_{X})
- Given a realizable learner $\mathcal{L} \mathrm{w} /$ sample complexity $n(\varepsilon, \delta)$ we...
(1) Step 1: Build a Non-Uniform Cover
- Draw an unlabeled sample $S_{U} \sim \bar{D}_{X}^{n(\varepsilon / 2, \delta / 2)}$

Putting it All Together

- Let's review the full algorithm:
- Adversary picks joint distribution \bar{D} (w/ marginal \bar{D}_{X})
- Given a realizable learner $\mathcal{L} \mathrm{w} /$ sample complexity $n(\varepsilon, \delta)$ we...
(1) Step 1: Build a Non-Uniform Cover
- Draw an unlabeled sample $S_{U} \sim \bar{D}_{X}^{n(\varepsilon / 2, \delta / 2)}$
- Run \mathcal{L} on all possible labelings of S_{U} :

$$
C:=\left\{\mathcal{L}\left(S_{U}, h\left(S_{U}\right)\right): h \in H\right\}
$$

Putting it All Together

- Let's review the full algorithm:
- Adversary picks joint distribution \bar{D} (w/ marginal \bar{D}_{X})
- Given a realizable learner $\mathcal{L} \mathrm{w} /$ sample complexity $n(\varepsilon, \delta)$ we...
(1) Step 1: Build a Non-Uniform Cover
- Draw an unlabeled sample $S_{U} \sim \bar{D}_{X}^{n(\varepsilon / 2, \delta / 2)}$
- Run \mathcal{L} on all possible labelings of S_{U} :

$$
C:=\left\{\mathcal{L}\left(S_{U}, h\left(S_{U}\right)\right): h \in H\right\}
$$

(2) Step 2: Learn the Non-Uniform Cover

Putting it All Together

- Let's review the full algorithm:
- Adversary picks joint distribution \bar{D} (w/ marginal \bar{D}_{X})
- Given a realizable learner $\mathcal{L} \mathrm{w} /$ sample complexity $n(\varepsilon, \delta)$ we...
(1) Step 1: Build a Non-Uniform Cover
- Draw an unlabeled sample $S_{U} \sim \bar{D}_{X}^{n(\varepsilon / 2, \delta / 2)}$
- Run \mathcal{L} on all possible labelings of S_{U} :

$$
C:=\left\{\mathcal{L}\left(S_{U}, h\left(S_{U}\right)\right): h \in H\right\}
$$

(2) Step 2: Learn the Non-Uniform Cover

- Draw a labeled sample $S_{L} \sim \bar{D}^{m}, m \approx \log (|C| / \delta) / \varepsilon^{2}$

Putting it All Together

- Let's review the full algorithm:
- Adversary picks joint distribution \bar{D} (w/ marginal \bar{D}_{X})
- Given a realizable learner $\mathcal{L} \mathrm{w} /$ sample complexity $n(\varepsilon, \delta)$ we...
(1) Step 1: Build a Non-Uniform Cover
- Draw an unlabeled sample $S_{U} \sim \bar{D}_{X}^{n(\varepsilon / 2, \delta / 2)}$
- Run \mathcal{L} on all possible labelings of S_{U} :

$$
C:=\left\{\mathcal{L}\left(S_{U}, h\left(S_{U}\right)\right): h \in H\right\}
$$

(2) Step 2: Learn the Non-Uniform Cover

- Draw a labeled sample $S_{L} \sim \bar{D}^{m}, m \approx \log (|C| / \delta) / \varepsilon^{2}$
- Return hypothesis in C with minimum empirical error over S_{L}

Putting it All Together

- Let's review the full algorithm:
- Adversary picks joint distribution \bar{D} (w/ marginal \bar{D}_{X})
- Given a realizable learner $\mathcal{L} \mathrm{w} /$ sample complexity $n(\varepsilon, \delta)$ we...
(1) Step 1: Build a Non-Uniform Cover
- Draw an unlabeled sample $S_{U} \sim \bar{D}_{X}^{n(\varepsilon / 2, \delta / 2)}$
- Run \mathcal{L} on all possible labelings of S_{U} :

$$
C:=\left\{\mathcal{L}\left(S_{U}, h\left(S_{U}\right)\right): h \in H\right\}
$$

(2) Step 2: Learn the Non-Uniform Cover

- Draw a labeled sample $S_{L} \sim \bar{D}^{m}, m \approx \log (|C| / \delta) / \varepsilon^{2}$
- Return hypothesis in C with minimum empirical error over S_{L}
- Outputs $h_{\text {out }}$ satisfies $\operatorname{err}_{\bar{D}}\left(h_{\text {out }}\right) \leq O P T+\varepsilon \mathrm{w} /$ high probability!

Unifying Framework

- This reduction uses no model-specific properties at all!
- No reliance on uniform convergence, sample compression, etc.

Unifying Framework

- This reduction uses no model-specific properties at all!
- No reliance on uniform convergence, sample compression, etc.
- This allows for a unifying framework for many models:
- Distribution-dependent learning
- Regression/Lipschitz loss
- Robust learning
- Semi-private learning
- Private prediction
- Stable learning
- Partial learning
- Statistical Query model
- Fairness

Unifying Framework

- This reduction uses no model-specific properties at all!
- No reliance on uniform convergence, sample compression, etc.
- This allows for a unifying framework for many models:
- Distribution-dependent learning
- Regression/Lipschitz loss
- Robust learning
- Semi-private learning
- Private prediction
- Stable learning
- Partial learning
- Statistical Query model
- Fairness

These results were mostly known: how about some new applications?

Learning with Arbitrary Distributional Assumptions

- In practice, PAC-Learning is often considered too worst-case
- One common relaxation is to make distributional assumptions on X

Learning with Arbitrary Distributional Assumptions

- In practice, PAC-Learning is often considered too worst-case
- One common relaxation is to make distributional assumptions on X
- We can model this generally by the learnability of triples (\mathscr{D}, X, H)
- Here \mathscr{D} is a fixed family of distributions over X
- The Adversary may only pick distributions from \mathscr{D}

Learning with Arbitrary Distributional Assumptions

- In practice, PAC-Learning is often considered too worst-case
- One common relaxation is to make distributional assumptions on X
- We can model this generally by the learnability of triples (\mathscr{D}, X, H)
- Here \mathscr{D} is a fixed family of distributions over X
- The Adversary may only pick distributions from \mathscr{D}

Uniform Convergence does not characterize learnability in this model.

Learning with Arbitrary Distributional Assumptions

- In practice, PAC-Learning is often considered too worst-case
- One common relaxation is to make distributional assumptions on X
- We can model this generally by the learnability of triples (\mathscr{D}, X, H)
- Here \mathscr{D} is a fixed family of distributions over X
- The Adversary may only pick distributions from \mathscr{D}

Uniform Convergence does not characterize learnability in this model.

Proposition (Benedek and Itai '91)

There exists a learnable class (D, X, H) over binary labels and classification loss without the uniform convergence property.

Learning with Arbitrary Distributional Assumptions

- In practice, PAC-Learning is often considered too worst-case
- One common relaxation is to make distributional assumptions on X
- We can model this generally by the learnability of triples (\mathscr{D}, X, H)
- Here \mathscr{D} is a fixed family of distributions over X
- The Adversary may only pick distributions from \mathscr{D}

Uniform Convergence does not characterize learnability in this model.

Proposition (Benedek and Itai '91)

There exists a learnable class (D, X, H) over binary labels and classification loss without the uniform convergence property.

- $X=[0,1], Y=\{0,1\}, D$ be the uniform distribution over X.

Learning with Arbitrary Distributional Assumptions

- In practice, PAC-Learning is often considered too worst-case
- One common relaxation is to make distributional assumptions on X
- We can model this generally by the learnability of triples (\mathscr{D}, X, H)
- Here \mathscr{D} is a fixed family of distributions over X
- The Adversary may only pick distributions from \mathscr{D}

Uniform Convergence does not characterize learnability in this model.

Proposition (Benedek and Itai '91)

There exists a learnable class (D, X, H) over binary labels and classification loss without the uniform convergence property.

- $X=[0,1], Y=\{0,1\}, D$ be the uniform distribution over X.
- $H=$ indicator functions for all finite sets $S \subset X$ and X

Learning with Arbitrary Distributional Assumptions

- In practice, PAC-Learning is often considered too worst-case
- One common relaxation is to make distributional assumptions on X
- We can model this generally by the learnability of triples (\mathscr{D}, X, H)
- Here \mathscr{D} is a fixed family of distributions over X
- The Adversary may only pick distributions from \mathscr{D}

Uniform Convergence does not characterize learnability in this model.

Proposition (Benedek and Itai '91)

There exists a learnable class (D, X, H) over binary labels and classification loss without the uniform convergence property.

- $X=[0,1], Y=\{0,1\}, D$ be the uniform distribution over X.
- $H=$ indicator functions for all finite sets $S \subset X$ and X
- Learn in single sample

Learning with Arbitrary Distributional Assumptions

- In practice, PAC-Learning is often considered too worst-case
- One common relaxation is to make distributional assumptions on X
- We can model this generally by the learnability of triples (\mathscr{D}, X, H)
- Here \mathscr{D} is a fixed family of distributions over X
- The Adversary may only pick distributions from \mathscr{D}

Uniform Convergence does not characterize learnability in this model.

Proposition (Benedek and Itai '91)

There exists a learnable class (D, X, H) over binary labels and classification loss without the uniform convergence property.

- $X=[0,1], Y=\{0,1\}, D$ be the uniform distribution over X.
- $H=$ indicator functions for all finite sets $S \subset X$ and X
- Learn in single sample
- Bad empirical estimate: hypothesis whose support is given by sample.

Open Problem: Learnability with Arbitrary Distributional Assumptions

Open Problem

What characterizes learnability of (\mathscr{D}, X, H) when \mathscr{D} is family of distributions?

Open Problem: Learnability with Arbitrary Distributional Assumptions

Open Problem

What characterizes learnability of (\mathscr{D}, X, H) when \mathscr{D} is family of distributions?

- Initial motivation for this work, very little is known!

Open Problem: Learnability with Arbitrary Distributional Assumptions

Open Problem

What characterizes learnability of (\mathscr{D}, X, H) when \mathscr{D} is family of distributions?

- Initial motivation for this work, very little is known!
- Uniform Convergence does not characterize learnability in this model.

Open Problem: Learnability with Arbitrary Distributional Assumptions

Open Problem

What characterizes learnability of (\mathscr{D}, X, H) when \mathscr{D} is family of distributions?

- Initial motivation for this work, very little is known!
- Uniform Convergence does not characterize learnability in this model.
- UBME: Finite ε-cover for (D, H) for every distribution $D \in \mathscr{D}$

Open Problem: Learnability with Arbitrary Distributional Assumptions

Open Problem

What characterizes learnability of (\mathscr{D}, X, H) when \mathscr{D} is family of distributions?

- Initial motivation for this work, very little is known!
- Uniform Convergence does not characterize learnability in this model.
- UBME: Finite ε-cover for (D, H) for every distribution $D \in \mathscr{D}$
- Necessary for learnability

Open Problem: Learnability with Arbitrary Distributional Assumptions

Open Problem

What characterizes learnability of (\mathscr{D}, X, H) when \mathscr{D} is family of distributions?

- Initial motivation for this work, very little is known!
- Uniform Convergence does not characterize learnability in this model.
- UBME: Finite ε-cover for (D, H) for every distribution $D \in \mathscr{D}$
- Necessary for learnability
- Sufficient for learnability when \mathscr{D} is set of all distributions or singleton.

Open Problem: Learnability with Arbitrary Distributional Assumptions

Open Problem

What characterizes learnability of (\mathscr{D}, X, H) when \mathscr{D} is family of distributions?

- Initial motivation for this work, very little is known!
- Uniform Convergence does not characterize learnability in this model.
- UBME: Finite ε-cover for (D, H) for every distribution $D \in \mathscr{D}$
- Necessary for learnability
- Sufficient for learnability when \mathscr{D} is set of all distributions or singleton.
- However, not sufficient when \mathscr{D} is an arbitrary distribution family [Dudley, Kulkarni, Richardson, Zeitouni '94]

Open Problem: Learnability with Arbitrary Distributional Assumptions

Open Problem

What characterizes learnability of (\mathscr{D}, X, H) when \mathscr{D} is family of distributions?

- Initial motivation for this work, very little is known!
- Uniform Convergence does not characterize learnability in this model.
- UBME: Finite ε-cover for (D, H) for every distribution $D \in \mathscr{D}$
- Necessary for learnability
- Sufficient for learnability when \mathscr{D} is set of all distributions or singleton.
- However, not sufficient when \mathscr{D} is an arbitrary distribution family [Dudley, Kulkarni, Richardson, Zeitouni '94]
- Can we use our tools to say more about this model?

Open Problem: Learnability with Arbitrary Distributional Assumptions

Open Problem

What characterizes learnability of (\mathscr{D}, X, H) when \mathscr{D} is family of distributions?

- Initial motivation for this work, very little is known!
- Uniform Convergence does not characterize learnability in this model.
- UBME: Finite ε-cover for (D, H) for every distribution $D \in \mathscr{D}$
- Necessary for learnability
- Sufficient for learnability when \mathscr{D} is set of all distributions or singleton.
- However, not sufficient when \mathscr{D} is an arbitrary distribution family [Dudley, Kulkarni, Richardson, Zeitouni '94]
- Can we use our tools to say more about this model?

Our reduction still works perfectly well!

Theorem

(\mathscr{D}, X, H) is Realizably learnable $\Longleftrightarrow(\mathscr{D}, X, H)$ is Agnostically learnable

General Loss Functions

- Many interesting learning problems have more involved notions of loss

General Loss Functions

- Many interesting learning problems have more involved notions of loss
- In regression, error is measured wrt ℓ_{p}-loss
- In robust learning, error is measured wrt robust loss

General Loss Functions

- Many interesting learning problems have more involved notions of loss
- In regression, error is measured wrt ℓ_{p}-loss
- In robust learning, error is measured wrt robust loss
- For classification loss and finite label space, learnability is characterized by uniform convergence.

General Loss Functions

- Many interesting learning problems have more involved notions of loss
- In regression, error is measured wrt ℓ_{p}-loss
- In robust learning, error is measured wrt robust loss
- For classification loss and finite label space, learnability is characterized by uniform convergence.
- Realizably learnable \Longleftrightarrow Agnostically learnable

General Loss Functions

- Many interesting learning problems have more involved notions of loss
- In regression, error is measured wrt ℓ_{p}-loss
- In robust learning, error is measured wrt robust loss
- For classification loss and finite label space, learnability is characterized by uniform convergence.
- Realizably learnable \Longleftrightarrow Agnostically learnable
- Not true for general loss functions!

General Loss Functions

- Many interesting learning problems have more involved notions of loss
- In regression, error is measured wrt ℓ_{p}-loss
- In robust learning, error is measured wrt robust loss
- For classification loss and finite label space, learnability is characterized by uniform convergence.
- Realizably learnable \Longleftrightarrow Agnostically learnable
- Not true for general loss functions!

Proposition

There exists a realizably learnable class (X, H, ℓ) over a finite label space Y which is not agnostically learnable.

General Loss Functions

- Many interesting learning problems have more involved notions of loss
- In regression, error is measured wrt ℓ_{p}-loss
- In robust learning, error is measured wrt robust loss
- For classification loss and finite label space, learnability is characterized by uniform convergence.
- Realizably learnable \Longleftrightarrow Agnostically learnable
- Not true for general loss functions!

Proposition

There exists a realizably learnable class (X, H, ℓ) over a finite label space Y which is not agnostically learnable.

- $X=$ natural numbers, $Y=\{0,1\}^{2}$.

General Loss Functions

- Many interesting learning problems have more involved notions of loss
- In regression, error is measured wrt ℓ_{p}-loss
- In robust learning, error is measured wrt robust loss
- For classification loss and finite label space, learnability is characterized by uniform convergence.
- Realizably learnable \Longleftrightarrow Agnostically learnable
- Not true for general loss functions!

Proposition

There exists a realizably learnable class (X, H, ℓ) over a finite label space Y which is not agnostically learnable.

- $X=$ natural numbers, $Y=\{0,1\}^{2}$.
- $H=$ all functions which output the first bit as 0 .

General Loss Functions

- Many interesting learning problems have more involved notions of loss
- In regression, error is measured wrt ℓ_{p}-loss
- In robust learning, error is measured wrt robust loss
- For classification loss and finite label space, learnability is characterized by uniform convergence.
- Realizably learnable \Longleftrightarrow Agnostically learnable
- Not true for general loss functions!

Proposition

There exists a realizably learnable class (X, H, ℓ) over a finite label space Y which is not agnostically learnable.

- $X=$ natural numbers, $Y=\{0,1\}^{2}$.
- $H=$ all functions which output the first bit as 0 .
- loss function $\ell: Y \times Y \rightarrow\{0,1, c\}$ as

$$
\ell\left(\left(b_{1}, r_{1}\right),\left(b_{2}, r_{2}\right)\right)= \begin{cases}0 & b_{1}=b_{2} \\ 1 & b_{1} \neq b_{2} \\ c & \text { otherwise } .\end{cases}
$$

General Loss Functions

- Loss function in this example $\ell: Y \times Y \rightarrow \mathbb{R}$ does not satisfy
- Identity of indiscernibles: $\ell\left(y_{1}, y_{2}\right)=0 \Longleftrightarrow y_{1}=y_{2}$.

General Loss Functions

- Loss function in this example $\ell: Y \times Y \rightarrow \mathbb{R}$ does not satisfy
- Identity of indiscernibles: $\ell\left(y_{1}, y_{2}\right)=0 \Longleftrightarrow y_{1}=y_{2}$.

This is the only case where the equivalence fails!

General Loss Functions

- Loss function in this example $\ell: Y \times Y \rightarrow \mathbb{R}$ does not satisfy
- Identity of indiscernibles: $\ell\left(y_{1}, y_{2}\right)=0 \Longleftrightarrow y_{1}=y_{2}$.

This is the only case where the equivalence fails!

Theorem

Suppose ℓ satisfies the identity of indiscernibles and Y is a finite label space. Then, (\mathscr{D}, X, H, ℓ) is Realizable learnable $\Longrightarrow(\mathscr{D}, X, H, \ell)$ is agnostically learnable.

General Loss Functions

- Loss function in this example $\ell: Y \times Y \rightarrow \mathbb{R}$ does not satisfy
- Identity of indiscernibles: $\ell\left(y_{1}, y_{2}\right)=0 \Longleftrightarrow y_{1}=y_{2}$.

This is the only case where the equivalence fails!

Theorem

Suppose ℓ satisfies the identity of indiscernibles and Y is a finite label space. Then, (\mathscr{D}, X, H, ℓ) is Realizable learnable $\Longrightarrow(\mathscr{D}, X, H, \ell)$ is agnostically learnable.

- We prove variants of equivalence for infinite labels:

General Loss Functions

- Loss function in this example $\ell: Y \times Y \rightarrow \mathbb{R}$ does not satisfy
- Identity of indiscernibles: $\ell\left(y_{1}, y_{2}\right)=0 \Longleftrightarrow y_{1}=y_{2}$.

This is the only case where the equivalence fails!

Theorem

Suppose ℓ satisfies the identity of indiscernibles and Y is a finite label space. Then, ($\mathscr{D}, X, H, \ell)$ is Realizable learnable $\Longrightarrow(\mathscr{D}, X, H, \ell)$ is agnostically learnable.

- We prove variants of equivalence for infinite labels:
- Loss functions bounded from above and below

General Loss Functions

- Loss function in this example $\ell: Y \times Y \rightarrow \mathbb{R}$ does not satisfy
- Identity of indiscernibles: $\ell\left(y_{1}, y_{2}\right)=0 \Longleftrightarrow y_{1}=y_{2}$.

This is the only case where the equivalence fails!

Theorem

Suppose ℓ satisfies the identity of indiscernibles and Y is a finite label space. Then, (\mathscr{D}, X, H, ℓ) is Realizable learnable $\Longrightarrow(\mathscr{D}, X, H, \ell)$ is agnostically learnable.

- We prove variants of equivalence for infinite labels:
- Loss functions bounded from above and below
- Loss functions satisfying an approximate triangle inequality

General Loss Functions

- Loss function in this example $\ell: Y \times Y \rightarrow \mathbb{R}$ does not satisfy
- Identity of indiscernibles: $\ell\left(y_{1}, y_{2}\right)=0 \Longleftrightarrow y_{1}=y_{2}$.

This is the only case where the equivalence fails!

Theorem

Suppose ℓ satisfies the identity of indiscernibles and Y is a finite label space. Then, (\mathscr{D}, X, H, ℓ) is Realizable learnable $\Longrightarrow(\mathscr{D}, X, H, \ell)$ is agnostically learnable.

- We prove variants of equivalence for infinite labels:
- Loss functions bounded from above and below
- Loss functions satisfying an approximate triangle inequality
- Basic technique involves discretizing before applying reduction

Table of Contents

(1) Background

- Realizable PAC Learning
- Agnostic Learning
- Realizable \Longleftrightarrow Agnostic Learning
(2) The Reduction
- Algorithm and Analysis
- Application: Distribution Dependent Learning
- Application: General Loss Functions
(3) Beyond Agnostic Learning
- Property Generalization
- Application: Semi-Private Learning

4 Open Problems!!

Property Generalization

- Let P denote a "property of learning algorithm"
- e.g. noise-tolerance, privacy, robustness

Property Generalization

- Let P denote a "property of learning algorithm"
- e.g. noise-tolerance, privacy, robustness

Definition (Finitely-Satisfiable Properties)

We call P finitely-satisfiable if there exists a learner with property P for every finite class (X, H)

Property Generalization

- Let P denote a "property of learning algorithm"
- e.g. noise-tolerance, privacy, robustness

Definition (Finitely-Satisfiable Properties)

We call P finitely-satisfiable if there exists a learner with property P for every finite class (X, H)

- Agnostic learning is a finitely-satisfiable property by ERM

Property Generalization

- Let P denote a "property of learning algorithm"
- e.g. noise-tolerance, privacy, robustness

Definition (Finitely-Satisfiable Properties)

We call P finitely-satisfiable if there exists a learner with property P for every finite class (X, H)

- Agnostic learning is a finitely-satisfiable property by ERM
- Realizable vs agnostic learning is part of a more general phenomenon:

Property Generalization

- Let P denote a "property of learning algorithm"
- e.g. noise-tolerance, privacy, robustness

Definition (Finitely-Satisfiable Properties)

We call P finitely-satisfiable if there exists a learner with property P for every finite class (X, H)

- Agnostic learning is a finitely-satisfiable property by ERM
- Realizable vs agnostic learning is part of a more general phenomenon:

Informal Meta-Theorem (Property Generalization)

Let P be a finitely-satisfiable property and \mathcal{L} a realizable learner for (X, H). Then \mathcal{L} can be used as a subroutine to build a learner for (X, H) satisfying (a variant of) property P.

Property Generalization

- Let P denote a "property of learning algorithm"
- e.g. noise-tolerance, privacy, robustness

Definition (Finitely-Satisfiable Properties)

We call P finitely-satisfiable if there exists a learner with property P for every finite class (X, H)

- Agnostic learning is a finitely-satisfiable property by ERM
- Realizable vs agnostic learning is part of a more general phenomenon:

Informal Meta-Theorem (Property Generalization)

Let P be a finitely-satisfiable property and \mathcal{L} a realizable learner for (X, H). Then \mathcal{L} can be used as a subroutine to build a learner for (X, H) satisfying (a variant of) property P.

- Main idea: replace ERM with finite learner for property P

Application: Privacy

- An algorithm is private if it is unlikely to change on similar samples

Application: Privacy

- An algorithm is private if it is unlikely to change on similar samples
- Privacy is a classic example of a finitely-satisfiable property
- Any finite class (X, H) can be privately learned [McSherry and Talwar '07]

Application: Privacy

- An algorithm is private if it is unlikely to change on similar samples
- Privacy is a classic example of a finitely-satisfiable property
- Any finite class (X, H) can be privately learned [McSherry and Talwar '07]
- Algorithm is called the exponential mechanism (EM)

Application: Privacy

- An algorithm is private if it is unlikely to change on similar samples
- Privacy is a classic example of a finitely-satisfiable property
- Any finite class (X, H) can be privately learned [McSherry and Talwar '07]
- Algorithm is called the exponential mechanism (EM)
- If we learn our cover C using EM, we get a semi-private learner

Application: Privacy

- An algorithm is private if it is unlikely to change on similar samples
- Privacy is a classic example of a finitely-satisfiable property
- Any finite class (X, H) can be privately learned [McSherry and Talwar '07]
- Algorithm is called the exponential mechanism (EM)
- If we learn our cover C using EM, we get a semi-private learner
- In this model, we have access to public unlabeled data

Application: Privacy

- An algorithm is private if it is unlikely to change on similar samples
- Privacy is a classic example of a finitely-satisfiable property
- Any finite class (X, H) can be privately learned [McSherry and Talwar '07]
- Algorithm is called the exponential mechanism (EM)
- If we learn our cover C using EM, we get a semi-private learner
- In this model, we have access to public unlabeled data
- Goal is to minimize amount of public data used (harder to gather)

Application: Privacy

- An algorithm is private if it is unlikely to change on similar samples
- Privacy is a classic example of a finitely-satisfiable property
- Any finite class (X, H) can be privately learned [McSherry and Talwar '07]
- Algorithm is called the exponential mechanism (EM)
- If we learn our cover C using EM, we get a semi-private learner
- In this model, we have access to public unlabeled data
- Goal is to minimize amount of public data used (harder to gather)

Theorem (Realizable \Longleftrightarrow Semi-Private Learning)

If (X, H) is Realizably learnable, it is possible to privately learn (X, H) to any ε-accuracy using $O(1 / \varepsilon)$ public (unlabeled) samples

Application: Privacy

- An algorithm is private if it is unlikely to change on similar samples
- Privacy is a classic example of a finitely-satisfiable property
- Any finite class (X, H) can be privately learned [McSherry and Talwar '07]
- Algorithm is called the exponential mechanism (EM)
- If we learn our cover C using EM, we get a semi-private learner
- In this model, we have access to public unlabeled data
- Goal is to minimize amount of public data used (harder to gather)

Theorem (Realizable \Longleftrightarrow Semi-Private Learning)

If (X, H) is Realizably learnable, it is possible to privately learn (X, H) to any ε-accuracy using $O(1 / \varepsilon)$ public (unlabeled) samples

- Result is tight when (X, H) cannot be privately learned [Alon, Bassily, Moran '19]

Application: Privacy

- An algorithm is private if it is unlikely to change on similar samples
- Privacy is a classic example of a finitely-satisfiable property
- Any finite class (X, H) can be privately learned [McSherry and Talwar '07]
- Algorithm is called the exponential mechanism (EM)
- If we learn our cover C using EM, we get a semi-private learner
- In this model, we have access to public unlabeled data
- Goal is to minimize amount of public data used (harder to gather)

Theorem (Realizable \Longleftrightarrow Semi-Private Learning)

If (X, H) is Realizably learnable, it is possible to privately learn (X, H) to any ε-accuracy using $O(1 / \varepsilon)$ public (unlabeled) samples

- Result is tight when (X, H) cannot be privately learned [Alon, Bassily, Moran '19]
- Improves over [ABM19] by avoiding uniform convergence
- Build a "uniform" cover and then learns the cover using EM.

Thanks!

- New blackbox reduction from agnostic to realizable learning
- Provides unifying framework by avoiding model-specific assumptions
- New results for models w/ no known characterizations
- Proof goes through new notion of "non-uniform" covers

Thanks!

- New blackbox reduction from agnostic to realizable learning
- Provides unifying framework by avoiding model-specific assumptions
- New results for models w/ no known characterizations
- Proof goes through new notion of "non-uniform" covers
- Open Problems
- Characterizing learnability w/ arbitrary distributional assumptions

Thanks!

- New blackbox reduction from agnostic to realizable learning
- Provides unifying framework by avoiding model-specific assumptions
- New results for models w/ no known characterizations
- Proof goes through new notion of "non-uniform" covers
- Open Problems
- Characterizing learnability w/ arbitrary distributional assumptions
- There are a few models our techniques can't handle yet...
e.g. Private learning

Thanks!

- New blackbox reduction from agnostic to realizable learning
- Provides unifying framework by avoiding model-specific assumptions
- New results for models w/ no known characterizations
- Proof goes through new notion of "non-uniform" covers
- Open Problems
- Characterizing learnability w/ arbitrary distributional assumptions
- There are a few models our techniques can't handle yet...
e.g. Private learning
- Connections between non-uniform covers and other randomized coverings

Max Hopkins

Daniel Kane

Shachar Lovett

Table of Contents

(1) Background

- Realizable PAC Learning
- Agnostic Learning
- Realizable \Longleftrightarrow Agnostic Learning

2 The Reduction

- Algorithm and Analysis
- Application: Distribution Dependent Learning
- Application: General Loss Functions
(3) Beyond Agnostic Learning
- Property Generalization
- Application: Semi-Private Learning

4 Open Problems!!

Uniform vs Non-Uniform Covers

- ABM19 builds a "uniform" cover and then learns the cover using EM.

Uniform vs Non-Uniform Covers

- ABM19 builds a "uniform" cover and then learns the cover using EM.

Definition (Uniform (ε, δ)-cover)

A distribution μ over the power set $P(H)$ is a uniform (ε, δ)-cover if $C \sim \mu$ covers H with high probability

$$
\underset{C \sim \mu}{\operatorname{Pr}}[C \text { is an } \varepsilon \text {-cover for }(D, X, H)] \geq 1-\delta
$$

Uniform vs Non-Uniform Covers

- ABM19 builds a "uniform" cover and then learns the cover using EM.

Definition (Uniform (ε, δ)-cover)

A distribution μ over the power set $P(H)$ is a uniform (ε, δ)-cover if $C \sim \mu$ covers H with high probability

$$
\underset{C \sim \mu}{\operatorname{Pr}}[C \text { is an } \varepsilon \text {-cover for }(D, X, H)] \geq 1-\delta
$$

- Uniform: C covers h for every $h \in H$ simultaneously whp.

Uniform vs Non-Uniform Covers

- ABM19 builds a "uniform" cover and then learns the cover using EM.

Definition (Uniform (ε, δ)-cover)

A distribution μ over the power set $P(H)$ is a uniform (ε, δ)-cover if $C \sim \mu$ covers H with high probability

$$
\underset{C \sim \mu}{\operatorname{Pr}}[C \text { is an } \varepsilon \text {-cover for }(D, X, H)] \geq 1-\delta
$$

- Uniform: C covers h for every $h \in H$ simultaneously whp.
- Non-uniform: C covers h whp for every $h \in H$.

Uniform vs Non-Uniform Covers

- ABM19 builds a "uniform" cover and then learns the cover using EM.

Definition (Uniform (ε, δ)-cover)

A distribution μ over the power set $P(H)$ is a uniform (ε, δ)-cover if $C \sim \mu$ covers H with high probability

$$
\underset{C \sim \mu}{\operatorname{Pr}}[C \text { is an } \varepsilon \text {-cover for }(D, X, H)] \geq 1-\delta
$$

- Uniform: C covers h for every $h \in H$ simultaneously whp.
- Non-uniform: C covers h whp for every $h \in H$.

Building proper uniform cover is strictly harder than proper non-uniform cover!

Uniform vs Non-Uniform Covers

- ABM19 builds a "uniform" cover and then learns the cover using EM.

Definition (Uniform (ε, δ)-cover)

A distribution μ over the power set $P(H)$ is a uniform (ε, δ)-cover if $C \sim \mu$ covers H with high probability

$$
\underset{C \sim \mu}{\operatorname{Pr}}[C \text { is an } \varepsilon \text {-cover for }(D, X, H)] \geq 1-\delta
$$

- Uniform: C covers h for every $h \in H$ simultaneously whp.
- Non-uniform: C covers h whp for every $h \in H$.

Building proper uniform cover is strictly harder than proper non-uniform cover!

Proposition

There exists triple (\mathscr{D}, X, H) such that

- Proper finite uniform cover requires at least $\Omega(1 / \varepsilon \cdot \log (1 / \varepsilon))$ samples.
- Proper finite non-uniform cover in at most $O(1 / \varepsilon)$ samples.

Uniform vs Non-Uniform Covers

- ABM19 builds a "uniform" cover and then learns the cover using EM.

Definition (Uniform (ε, δ)-cover)

A distribution μ over the power set $P(H)$ is a uniform (ε, δ)-cover if $C \sim \mu$ covers H with high probability

$$
\underset{C \sim \mu}{\operatorname{Pr}}[C \text { is an } \varepsilon \text {-cover for }(D, X, H)] \geq 1-\delta
$$

- Uniform: C covers h for every $h \in H$ simultaneously whp.
- Non-uniform: C covers h whp for every $h \in H$.

Building proper uniform cover is strictly harder than proper non-uniform cover!

Proposition

There exists triple (\mathscr{D}, X, H) such that

- Proper finite uniform cover requires at least $\Omega(1 / \varepsilon \cdot \log (1 / \varepsilon))$ samples.
- Proper finite non-uniform cover in at most $O(1 / \varepsilon)$ samples.
- Open Problem: Does this gap also exist for improper covers?

