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Learning (Setup)

o Let X be a set (e.g. RY)
o Let H be a family of binary classifiers (e.g. halfspaces)

@ We will be interested in the “learnability” of classes (X, H)
o Given random labeled samples (z, h(z)), can we identify h?
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PAC Learning (Formal)

e Fix ‘accuracy’ and ‘confidence’ parameters £,5 > 0
o PAC-learning is a game between a “Learner” L and “Adversary” A:

@ First, A secretly picks a distribution D over X, and h € H
@ Second, L draws labeled samples (z, h(x)) with @ ~ D
© Based on received samples .S, £ outputs a guess for h

o L wins the game if their output £(S5) is close to h:
e, (L(S)) = Pr[£(S)(x) # h()] < e
T~

o L has a winning strategy if they win whp for any choice of D, h:

VD, h: P;r[err])_’;L(E(S)) <e]>1-4¢

Definition (Realizable PAC-Learning)

(X, H) is Realizably learnable with “sample complexity” n(s,d) if Ve,d > 0, £ has a winning
strategy using at most n(s,d) samples
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Agnostic Learning (Formalized)

o Fix an ‘accuracy’ and ‘confidence’ parameters £,5 > 0
@ This model is called “Agnostic”’ learning:
@ First, A picks a Joint Distribution D over X x {0,1}
@ Second, £ draws labeled samples (z,1) ~ D
© Based on the received sample S, £ outputs a guess for closest in H to D
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Agnostic Learning (Formalized)

o Fix an ‘accuracy’ and ‘confidence’ parameters £,5 > 0
@ This model is called “Agnostic” learning:
@ First, A picks a Joint Distribution D over X x {0,1}
@ Second, £ draws labeled samples (z,1) ~ D
© Based on the received sample S, £ outputs a guess for closest in H to D

o £ wins if their output £(S) is a good guess for D:
errp (£(S5))= ( P)r _[L(S)(z) #y]| <OPT +¢
z,y)~D
OPT:= mi 5(h
min{errp (h)}

e L has a winning strategy if they win whp for any choice of D
VD: Pr[errp(L(S)) SOPT +¢e]>1-34
S~D

Definition (Agnostic PAC-Learning)

(X, H) is Agnostically learnable with “sample complexity” m(e, ) if Ve,d > 0, £ has a winning
strategy using at most m(e,d) samples
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Equivalence of Realizable and Agnostic Learning

@ Agnostic learning seems much harder than Realizable learning...

o Adversary has strictly more power!

@ But it turns out they're equivalent!

Theorem (Blumer, Ehrenfeucht, Haussler, Warmuth '89, Haussler '92)

(X, H) is Realizably learnable <= (X, H) is Agnostically learnable

@ Proof relies on uniform convergence

o (Empirical error approaches true error for all h € H simultaneously)

o Unfortunately, uniform convergence fails beyond the PAC-model

o e.g. distribution-dependent learning; general loss functions...

Hopkins, Kane, Lovett, Mahajan 11/29



Is the equivalence of the realizable and agnostic models a fundamental property of learnability?

Hopkins, Kane, Lovett, Mahajan



Is the equivalence of the realizable and agnostic models a fundamental property of learnability?

@ Despite no uniform convergence, equivalence always seems to hold!

Distribution-dependent learning [BI91]
Regression [BLW96]

Private learning [BNS14]

Multi-class learning [DMY16]

Robust learning [MHS19]
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Private prediction [DF20]
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Is the equivalence of the realizable and agnostic models a fundamental property of learnability?

@ Despite no uniform convergence, equivalence always seems to hold!

Distribution-dependent learning [BI191]
Regression [BLW96]

Private learning [BNS14]

Multi-class learning [DMY16]

Robust learning [MHS19]
Semi-private learning [ABM19]
Private prediction [DF20]

Stable learning [DF20]

Partial learning [AHHM21]

Can we explain this phenomenon more generally?

Hopkins, Kane, Lovett, Mahajan



Table of Contents

© The Reduction
o Algorithm and Analysis
@ Application: Distribution Dependent Learning
@ Application: General Loss Functions

Hopkins, Kane, Lovett, Mahajan 13/29



A Direct Reduction in Two Steps

o Let £ be a realizable learner for H on n(e,d) samples

Hopkins, Kane, Lovett, Mahajan



A Direct Reduction in Two Steps

o Let £ be a realizable learner for H on n(e,d) samples

o We'll build an agnostic learner for H in two main steps:

Hopkins, Kane, Lovett, Mahajan 14 /29



A Direct Reduction in Two Steps

o Let £ be a realizable learner for H on n(e,d) samples

o We'll build an agnostic learner for H in two main steps:

© Step 1: Build a “cover” of H

Hopkins, Kane, Lovett, Mahajan 14 /29



A Direct Reduction in Two Steps

o Let £ be a realizable learner for H on n(e,d) samples

o We'll build an agnostic learner for H in two main steps:

© Step 1: Build a “cover” of H

o Using unlabeled samples and the learner L...
o Construct a small (finite) subset that “approximates” H

Hopkins, Kane, Lovett, Mahajan 14 /29



A Direct Reduction in Two Steps

o Let £ be a realizable learner for H on n(e,d) samples

o We'll build an agnostic learner for H in two main steps:

© Step 1: Build a “cover” of H
o Using unlabeled samples and the learner L...
o Construct a small (finite) subset that “approximates” H

@ Step 2: Learn the cover

Hopkins, Kane, Lovett, Mahajan 14 /29



A Direct Reduction in Two Steps

o Let £ be a realizable learner for H on n(e,d) samples

o We'll build an agnostic learner for H in two main steps:

© Step 1: Build a “cover” of H

o Using unlabeled samples and the learner L...
o Construct a small (finite) subset that “approximates” H

@ Step 2: Learn the cover
o Using labeled samples, output a good hypothesis in the cover

Hopkins, Kane, Lovett, Mahajan 14 /29



Step 1: Non-Uniform Covering

o A set C is an e-cover for (D, H)

Hopkins, Kane, Lovett, Mahajan



Step 1: Non-Uniform Covering

o A set C is an e-cover for (D, H)
if for every h € H, there exists b’ € C such that

Hopkins, Kane, Lovett, Mahajan



Step 1: Non-Uniform Covering

o A set C is an e-cover for (D, H)
if for every h € H, there exists b’ € C such that
h' is close to h under D

Hopkins, Kane, Lovett, Mahajan



Step 1: Non-Uniform Covering

o A set C is an e-cover for (D, H)
if for every h € H, there exists b’ € C such that
h' is close to h under D
Vhe H3W € Crerrp p(h)) <e

Hopkins, Kane, Lovett, Mahajan



Step 1: Non-Uniform Covering

o A set C is an e-cover for (D, H)
if for every h € H, there exists b’ € C such that
h' is close to h under D
Vhe H3W € Crerrp p(h)) <e

o We instead construct a a non-uniform (e, d)-cover for (D, H)

Hopkins, Kane, Lovett, Mahajan



Step 1: Non-Uniform Covering

o A set C is an e-cover for (D, H)
if for every h € H, there exists b’ € C such that
h' is close to h under D
Vhe H3W € Crerrp p(h)) <e

o We instead construct a a non-uniform (e, d)-cover for (D, H)
a finite set C with the following guarantee:

Hopkins, Kane, Lovett, Mahajan



Step 1: Non-Uniform Covering

o A set C is an e-cover for (D, H)
if for every h € H, there exists b’ € C such that
h' is close to h under D
Vhe H3W € Crerrp p(h)) <e

o We instead construct a a non-uniform (e, d)-cover for (D, H)
a finite set C with the following guarantee:
for every fixed hypothesis h € H,

Hopkins, Kane, Lovett, Mahajan



Step 1: Non-Uniform Covering

o A set C is an e-cover for (D, H)
if for every h € H, there exists b’ € C such that
h' is close to h under D
Vhe H3W € Crerrp p(h)) <e

o We instead construct a a non-uniform (e, d)-cover for (D, H)
a finite set C with the following guarantee:
for every fixed hypothesis h € H,
C contains h' close to h with probability 1 — ¢

Hopkins, Kane, Lovett, Mahajan



Step 1: Non-Uniform Covering

o A set C is an e-cover for (D, H)
if for every h € H, there exists b’ € C such that
h' is close to h under D
Vhe H3W € Crerrp p(h)) <e

o We instead construct a a non-uniform (e, d)-cover for (D, H)
a finite set C with the following guarantee:
for every fixed hypothesis h € H,
C contains h' close to h with probability 1 — ¢

Vhe H Pr[3h € C:errp (W) <] 2 1-6.

Hopkins, Kane, Lovett, Mahajan



Step 1: Non-Uniform Covering

o A set C is an e-cover for (D, H)
if for every h € H, there exists b’ € C such that
h' is close to h under D
Vhe H3W € Crerrp p(h)) <e

o We instead construct a a non-uniform (e, d)-cover for (D, H)
a finite set C with the following guarantee:
for every fixed hypothesis h € H,
C' contains h’ close to h with probability 1 — ¢

Vhe H Pr[3h € C:errp (W) <] 2 1-6.

o Note this does not mean C'is an e-cover for (D, H) with high probability!

Hopkins, Kane, Lovett, Mahajan



Step 1: Non-Uniform Covering

o A set C is an e-cover for (D, H)
if for every h € H, there exists b’ € C such that
h' is close to h under D
Vhe H3W € Crerrp p(h)) <e

o We instead construct a a non-uniform (e, d)-cover for (D, H)
a finite set C with the following guarantee:
for every fixed hypothesis h € H,
C' contains h’ close to h with probability 1 — ¢

Vhe H Pr[3h € C:errp (W) <] 2 1-6.

o Note this does not mean C'is an e-cover for (D, H) with high probability!
o C'is likely to miss some hypotheses each time

Hopkins, Kane, Lovett, Mahajan



Step 1: Non-Uniform Covering

o A set C is an e-cover for (D, H)
if for every h € H, there exists b’ € C such that
h' is close to h under D
Vhe H3W € Crerrp p(h)) <e

o We instead construct a a non-uniform (e, d)-cover for (D, H)
a finite set C with the following guarantee:
for every fixed hypothesis h € H,
C contains h' close to h with probability 1 — ¢

Vhe H Pr[3h € C:errp (W) <] 2 1-6.

o Note this does not mean C'is an e-cover for (D, H) with high probability!

o C'is likely to miss some hypotheses each time
o Covering all hypotheses simultaneously requires additional samples
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Step 2: Non-Uniform Covering — Agnostic Learning

o Recall Adversary picks joint distribution D (w/ marginal Dx)

o Why care about bounded non-uniform covers?

o For every fixed h € H, C contains h’ close to h whp
o This is true for ho pr, the optimal hypothesis! (err5(hopr) = OPT)

@ In other words, C' probably contains h* close to hopr satisfying:
Pr [h*(z) # hopr(z)] <e/2 = errp(h*) < OPT +¢/2
xz~D x
o Now if we can agnostically learn C' to €/2 error, we get hout:

errp(hout) < OPT 4 ¢

@ Since C' is finite, we can use Empirical Risk Minimization:

o For any fixed h € H, empirical error approaches true error
o Union bounding over C, true for all h € C simultaneously
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o Adversary picks joint distribution D (w/ marginal D)
o Given a realizable learner £ w/ sample complexity n(e, d) we...

@ Step 1: Build a Non-Uniform Cover

o Draw an unlabeled sample Sy ~ D?{(E/Q’é/m
o Run L on all possible labelings of Si:

C = {L(Sy,h(Sy)):h € H}

@ Step 2: Learn the Non-Uniform Cover
o Draw a labeled sample S;, ~ D™, m = log(|C|/5)/e?
o Return hypothesis in C with minimum empirical error over S,

o Outputs hoyt satisfies err 5 (hout) < OPT + € w/ high probability!
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Unifying Framework

@ This reduction uses no model-specific properties at all!
o No reliance on uniform convergence, sample compression, etc.

@ This allows for a unifying framework for many models:

Distribution-dependent learning
Regression/Lipschitz loss
Robust learning

Semi-private learning

Private prediction

Stable learning

Partial learning

Statistical Query model
Fairness

These results were mostly known: how about some new applications?
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o In practice, PAC-Learning is often considered too worst-case
o One common relaxation is to make distributional assumptions on X

o We can model this generally by the learnability of triples (2, X, H)

o Here 7 is a fixed family of distributions over X
o The Adversary may only pick distributions from &

Uniform Convergence does not characterize learnability in this model.

Proposition (Benedek and Itai ‘91)

There exists a learnable class (D, X, H) over binary labels and classification loss without the
uniform convergence property.

X =[0,1], Y ={0,1}, D be the uniform distribution over X.
H = indicator functions for all finite sets S C X and X

Learn in single sample

Bad empirical estimate: hypothesis whose support is given by sample.
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Open Problem: Learnability with Arbitrary Distributional Assumptions

Open Problem
What characterizes learnability of (2, X, H) when 2 is family of distributions?

o Initial motivation for this work, very little is known!

o Uniform Convergence does not characterize learnability in this model.
o UBME: Finite e-cover for (D, H) for every distribution D € 2
o Necessary for learnability
o Sufficient for learnability when Z is set of all distributions or singleton.
o However, not sufficient when & is an arbitrary distribution family [Dudley, Kulkarni,
Richardson, Zeitouni '94]

@ Can we use our tools to say more about this model?

Our reduction still works perfectly well!

(9,X,H) is Realizably learnable <— (9, X, H) is Agnostically learnable
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General Loss Functions

@ Many interesting learning problems have more involved notions of loss
o In regression, error is measured wrt £,-loss
o In robust learning, error is measured wrt robust loss

@ For classification loss and finite label space, learnability is characterized by uniform
convergence.

o Realizably learnable <= Agnostically learnable
o Not true for general loss functions!

Proposition

There exists a realizably learnable class (X, H, £) over a finite label space Y which is not
agnostically learnable.

e X = natural numbers, Y = {0,1}2.
e H = all functions which output the first bit as 0.
@ loss function £: Y x Y — {0,1,c} as

0 by =bs
L((b1,71),(b2,72)) =<1 b1 #byandri =1rs

¢ otherwise.
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General Loss Functions

@ Loss function in this example £: Y X Y — R does not satisfy
o ldentity of indiscernibles: ¢(y1,y2) =0 <= y1 = yo2.

This is the only case where the equivalence fails!

Suppose { satisfies the identity of indiscernibles and 'Y is a finite label space. Then, (2,X, H,{)
is Realizable learnable —> (2,X, H,?) is agnostically learnable.

@ We prove variants of equivalence for infinite labels:

o Loss functions bounded from above and below
o Loss functions satisfying an approximate triangle inequality

@ Basic technique involves discretizing before applying reduction

Hopkins, Kane, Lovett, Mahajan 23 /29
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Property Generalization

o Let P denote a “property of learning algorithm”
o e.g. noise-tolerance, privacy, robustness

Definition (Finitely-Satisfiable Properties)
We call P finitely-satisfiable if there exists a learner with property P for every finite class (X, H)

@ Agnostic learning is a finitely-satisfiable property by ERM
@ Realizable vs agnostic learning is part of a more general phenomenon:

Informal Meta-Theorem (Property Generalization)

Let P be a finitely-satisfiable property and L a realizable learner for (X, H). Then L can be used
as a subroutine to build a learner for (X, H) satisfying (a variant of) property P.

o Main idea: replace ERM with finite learner for property P
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@ An algorithm is private if it is unlikely to change on similar samples

@ Privacy is a classic example of a finitely-satisfiable property

o Any finite class (X, H) can be privately learned [McSherry and Talwar '07]
o Algorithm is called the exponential mechanism (EM)

o If we learn our cover C' using EM, we get a semi-private learner

o In this model, we have access to public unlabeled data
o Goal is to minimize amount of public data used (harder to gather)

Theorem (Realizable <= Semi-Private Learning)

If (X, H) is Realizably learnable, it is possible to privately learn (X, H) to any e-accuracy using
O(1/e) public (unlabeled) samples

Hopkins, Kane, Lovett, Mahajan 26 /29



Application: Privacy

@ An algorithm is private if it is unlikely to change on similar samples

@ Privacy is a classic example of a finitely-satisfiable property

o Any finite class (X, H) can be privately learned [McSherry and Talwar '07]
o Algorithm is called the exponential mechanism (EM)

o If we learn our cover C' using EM, we get a semi-private learner

o In this model, we have access to public unlabeled data
o Goal is to minimize amount of public data used (harder to gather)

Theorem (Realizable <= Semi-Private Learning)

If (X, H) is Realizably learnable, it is possible to privately learn (X, H) to any e-accuracy using
O(1/e) public (unlabeled) samples

o Result is tight when (X, H) cannot be privately learned [Alon, Bassily, Moran ‘19]

Hopkins, Kane, Lovett, Mahajan 26 /29



Application: Privacy

@ An algorithm is private if it is unlikely to change on similar samples
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o Algorithm is called the exponential mechanism (EM)

o If we learn our cover C' using EM, we get a semi-private learner

o In this model, we have access to public unlabeled data
o Goal is to minimize amount of public data used (harder to gather)

Theorem (Realizable <= Semi-Private Learning)

If (X, H) is Realizably learnable, it is possible to privately learn (X, H) to any e-accuracy using
O(1/e) public (unlabeled) samples

o Result is tight when (X, H) cannot be privately learned [Alon, Bassily, Moran ‘19]

o Improves over [ABM19] by avoiding uniform convergence
e Build a “uniform” cover and then learns the cover using EM.
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@ New blackbox reduction from agnostic to realizable learning
o Provides unifying framework by avoiding model-specific assumptions
o New results for models w/ no known characterizations
o Proof goes through new notion of “non-uniform” covers

@ Open Problems
o Characterizing learnability w/ arbitrary distributional assumptions
o There are a few models our techniques can’t handle yet...

e.g. Private learning
o Connections between non-uniform covers and other randomized coverings

Max Hopkins Daniel Kane Shachar Lovett
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o Uniform: C covers h for every h € H simultaneously whp.
@ Non-uniform: C covers h whp for every h € H.

Building proper uniform cover is strictly harder than proper non-uniform cover!

Proposition

There exists triple (2, X, H) such that
@ Proper finite uniform cover requires at least Q(1/e - log(1/€)) samples.

@ Proper finite non-uniform cover in at most O(1/e) samples.

@ Open Problem: Does this gap also exist for improper covers?
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