Realizable Learning is All You Need

Talk by: Gaurav Mahajan (UCSD)

Joint with:

Max Hopkins

Daniel Kane

Shachar Lovett

Overview

Background

- Realizable PAC Learning
- Agnostic Learning
- \bullet Realizable \iff Agnostic Learning

2 The Reduction

- Algorithm and Analysis
- Application: Distribution Dependent Learning
- Application: General Loss Functions

Beyond Agnostic Learning

- Property Generalization
- Application: Semi-Private Learning

Open Problems!!

Background

- Realizable PAC Learning
- Agnostic Learning
- \bullet Realizable \iff Agnostic Learning

2) The Reduction

- Algorithm and Analysis
- Application: Distribution Dependent Learning
- Application: General Loss Functions

Beyond Agnostic Learning

- Property Generalization
- Application: Semi-Private Learning

Open Problems!!

• Let X be a set (e.g. \mathbb{R}^d)

- Let X be a set (e.g. $\mathbb{R}^d)$
- Let H be a family of binary classifiers (e.g. halfspaces)

- Let X be a set (e.g. \mathbb{R}^d)
- Let H be a family of binary classifiers (e.g. halfspaces)

- Let X be a set (e.g. $\mathbb{R}^d)$
- Let H be a family of binary classifiers (e.g. halfspaces)

- We will be interested in the "learnability" of classes (X, H)
 - Given random labeled samples (x, h(x)), can we identify h?

• PAC-learning is a game between a "Learner" \mathcal{L} and "Adversary" \mathcal{A} :

- PAC-learning is a game between a "Learner" \mathcal{L} and "Adversary" \mathcal{A} :
 - \P First, \mathcal{A} secretly picks a distribution D over X, and $h \in H$

- \bullet PAC-learning is a game between a "Learner" ${\cal L}$ and "Adversary" ${\cal A}:$
 - **(**) First, \mathcal{A} secretly picks a distribution D over X, and $h \in H$
 - **2** Second, \mathcal{L} draws *labeled* samples (x, h(x)) with $x \sim D$

- \bullet PAC-learning is a game between a "Learner" $\mathcal L$ and "Adversary" $\mathcal A$:
 - **(**) First, \mathcal{A} secretly picks a distribution D over X, and $h \in H$
 - **2** Second, \mathcal{L} draws *labeled* samples (x, h(x)) with $x \sim D$
 - **③** Based on received samples S, \mathcal{L} outputs a guess for h

- \bullet PAC-learning is a game between a "Learner" $\mathcal L$ and "Adversary" $\mathcal A$:
 - **(**) First, \mathcal{A} secretly picks a distribution D over X, and $h \in H$
 - **2** Second, \mathcal{L} draws *labeled* samples (x, h(x)) with $x \sim D$
 - **③** Based on received samples S, \mathcal{L} outputs a guess for h
- \mathcal{L} wins the game if their output $\mathcal{L}(S)$ is close to h:

- PAC-learning is a game between a "Learner" $\mathcal L$ and "Adversary" $\mathcal A$:
 - **(**) First, \mathcal{A} secretly picks a distribution D over X, and $h \in H$
 - **2** Second, \mathcal{L} draws *labeled* samples (x, h(x)) with $x \sim D$
 - **③** Based on received samples S, \mathcal{L} outputs a guess for h
- \mathcal{L} wins the game if their output $\mathcal{L}(S)$ is close to h:

• $\mathcal L$ has a winning strategy if they win whp for any choice of D, h

- Fix 'accuracy' and 'confidence' parameters $\varepsilon, \delta > 0$
- \bullet PAC-learning is a game between a "Learner" ${\cal L}$ and "Adversary" ${\cal A}:$
 - **(**) First, \mathcal{A} secretly picks a distribution D over X, and $h \in H$
 - **2** Second, \mathcal{L} draws *labeled* samples (x, h(x)) with $x \sim D$
 - ${f 0}$ Based on received samples $S,\,{\cal L}$ outputs a guess for h
- \mathcal{L} wins the game if their output $\mathcal{L}(S)$ is close to h:

• \mathcal{L} has a winning strategy if they win whp for any choice of D, h:

- Fix 'accuracy' and 'confidence' parameters $\varepsilon, \delta > 0$
- \bullet PAC-learning is a game between a "Learner" ${\cal L}$ and "Adversary" ${\cal A}:$
 - **(**) First, \mathcal{A} secretly picks a distribution D over X, and $h \in H$
 - **2** Second, \mathcal{L} draws *labeled* samples (x, h(x)) with $x \sim D$
 - ${f 0}$ Based on received samples $S,\,{\cal L}$ outputs a guess for h
- \mathcal{L} wins the game if their output $\mathcal{L}(S)$ is close to h:

$$\operatorname{err}_{D,h}(\mathcal{L}(S))\coloneqq \Pr_{x\sim D}[\mathcal{L}(S)(x)\neq h(x)]\leq \varepsilon$$

• \mathcal{L} has a winning strategy if they win whp for any choice of D, h:

- Fix 'accuracy' and 'confidence' parameters $\varepsilon, \delta > 0$
- \bullet PAC-learning is a game between a "Learner" ${\cal L}$ and "Adversary" ${\cal A}:$
 - **(**) First, \mathcal{A} secretly picks a distribution D over X, and $h \in H$
 - **2** Second, \mathcal{L} draws *labeled* samples (x, h(x)) with $x \sim D$
 - ${f 0}$ Based on received samples $S,\,{\cal L}$ outputs a guess for h
- \mathcal{L} wins the game if their output $\mathcal{L}(S)$ is close to h:

$$\operatorname{err}_{D,h}(\mathcal{L}(S))\coloneqq \Pr_{x\sim D}[\mathcal{L}(S)(x)\neq h(x)]\leq \varepsilon$$

• \mathcal{L} has a winning strategy if they win whp for any choice of D, h:

 $\forall D,h: \Pr_{S}[\mathsf{err}_{D,h}(\mathcal{L}(S)) \leq \varepsilon] \geq 1 - \delta$

- Fix 'accuracy' and 'confidence' parameters $\varepsilon, \delta > 0$
- \bullet PAC-learning is a game between a "Learner" ${\cal L}$ and "Adversary" ${\cal A}:$
 - **(**) First, \mathcal{A} secretly picks a distribution D over X, and $h \in H$
 - **2** Second, \mathcal{L} draws *labeled* samples (x, h(x)) with $x \sim D$
 - ${f 0}$ Based on received samples $S,\,{\cal L}$ outputs a guess for h
- \mathcal{L} wins the game if their output $\mathcal{L}(S)$ is close to h:

$$\operatorname{err}_{D,h}(\mathcal{L}(S)) \coloneqq \Pr_{x \sim D}[\mathcal{L}(S)(x) \neq h(x)] \leq \varepsilon$$

• \mathcal{L} has a winning strategy if they win whp for any choice of D, h:

```
\forall D, h: \Pr_{S}[\mathsf{err}_{D,h}(\mathcal{L}(S)) \le \varepsilon] \ge 1 - \delta
```

Definition (Realizable PAC-Learning)

(X, H) is Realizably learnable with "sample complexity" $n(\varepsilon, \delta)$ if $\forall \varepsilon, \delta > 0$, \mathcal{L} has a winning strategy using at most $n(\varepsilon, \delta)$ samples

Agnostic Learning (Informal)

 $\bullet\,$ Realizable learning forces the adversary to pick from H

Agnostic Learning (Informal)

- $\bullet\,$ Realizable learning forces the adversary to pick from H
- A more realistic model drops this assumption:

- $\bullet\,$ Realizable learning forces the adversary to pick from H
- A more realistic model drops this assumption:
 - The adversary can pick any labeling at all...
 - ${\scriptstyle \bullet}$ but the learner only needs to be close to the best hypothesis in H

- $\bullet\,$ Realizable learning forces the adversary to pick from H
- A more realistic model drops this assumption:
 - The adversary can pick any labeling at all...
 - ${\scriptstyle \bullet}$ but the learner only needs to be close to the best hypothesis in H
- This model is called "Agnostic" learning:

- $\bullet\,$ Realizable learning forces the adversary to pick from H
- A more realistic model drops this assumption:
 - The adversary can pick any labeling at all...
 - ${\scriptstyle \bullet}$ but the learner only needs to be close to the best hypothesis in H
- This model is called "Agnostic" learning:
 - **(**) First, \mathcal{A} picks a Joint Distribution \overline{D} over $X \times \{0, 1\}$

- $\bullet\,$ Realizable learning forces the adversary to pick from H
- A more realistic model drops this assumption:
 - The adversary can pick any labeling at all...
 - ${\scriptstyle \bullet}$ but the learner only needs to be close to the best hypothesis in H
- This model is called "Agnostic" learning:
 - **9** First, \mathcal{A} picks a Joint Distribution \overline{D} over $X \times \{0, 1\}$
 - **2** Second, \mathcal{L} draws *labeled* samples $(x, y) \sim \overline{D}$

- Realizable learning forces the adversary to pick from ${\cal H}$
- A more realistic model drops this assumption:
 - The adversary can pick any labeling at all...
 - ${\scriptstyle \bullet}$ but the learner only needs to be close to the best hypothesis in H
- This model is called "Agnostic" learning:
 - **9** First, \mathcal{A} picks a Joint Distribution \overline{D} over $X \times \{0, 1\}$
 - **2** Second, \mathcal{L} draws *labeled* samples $(x, y) \sim \overline{D}$
 - **(a)** Based on the received sample S, $\mathcal L$ outputs a guess for closest in H to $\bar D$

- Realizable learning forces the adversary to pick from ${\cal H}$
- A more realistic model drops this assumption:
 - The adversary can pick any labeling at all...
 - ${\scriptstyle \bullet}$ but the learner only needs to be close to the best hypothesis in H
- This model is called "Agnostic" learning:
 - **9** First, \mathcal{A} picks a Joint Distribution \overline{D} over $X \times \{0, 1\}$
 - 2 Second, \mathcal{L} draws labeled samples $(x, y) \sim \overline{D}$
 - ${f 0}$ Based on the received sample S, ${\cal L}$ outputs a guess for closest in H to ar D
- \mathcal{L} wins if their output $\mathcal{L}(S)$ is a good guess for \bar{D}

- Realizable learning forces the adversary to pick from ${\cal H}$
- A more realistic model drops this assumption:
 - The adversary can pick any labeling at all...
 - but the learner only needs to be close to the best hypothesis in H
- This model is called "Agnostic" learning:
 - **9** First, \mathcal{A} picks a Joint Distribution \overline{D} over $X \times \{0, 1\}$
 - 2 Second, \mathcal{L} draws labeled samples $(x, y) \sim \overline{D}$
 - **(a)** Based on the received sample S, ${\cal L}$ outputs a guess for closest in H to ar D
- \mathcal{L} wins if their output $\mathcal{L}(S)$ is a good guess for \bar{D}

• $\mathcal L$ has a winning strategy if they win whp for any choice of $\bar D$

- Fix an 'accuracy' and 'confidence' parameters $\varepsilon, \delta > 0$
- This model is called "Agnostic" learning:
 - **9** First, \mathcal{A} picks a Joint Distribution \overline{D} over $X \times \{0, 1\}$
 - **2** Second, \mathcal{L} draws *labeled* samples $(x, y) \sim \overline{D}$
 - ${f 0}$ Based on the received sample S, ${\cal L}$ outputs a guess for closest in H to ar D
- \mathcal{L} wins if their output $\mathcal{L}(S)$ is a good guess for \bar{D}

• $\mathcal L$ has a winning strategy if they win whp for any choice of $\bar D$

Agnostic Learning (Formalized)

- $\bullet\,$ Fix an 'accuracy' and 'confidence' parameters $\varepsilon,\delta>0$
- This model is called "Agnostic" learning:
 - **(**) First, \mathcal{A} picks a Joint Distribution \overline{D} over $X \times \{0, 1\}$
 - **2** Second, \mathcal{L} draws *labeled* samples $(x, y) \sim \overline{D}$
 - **③** Based on the received sample S, $\mathcal L$ outputs a guess for closest in H to ar D
- \mathcal{L} wins if their output $\mathcal{L}(S)$ is a good guess for \overline{D} :

$$\begin{split} \operatorname{err}_{\bar{D}}(\mathcal{L}(S)) &\coloneqq \Pr_{(x,y) \sim \bar{D}}[\mathcal{L}(S)(x) \neq y] \leq OPT + \varepsilon\\ OPT &\coloneqq \min_{h \in H} \{\operatorname{err}_{\bar{D}}(h)\} \end{split}$$

• $\mathcal L$ has a winning strategy if they win whp for any choice of ar D

Agnostic Learning (Formalized)

- $\bullet\,$ Fix an 'accuracy' and 'confidence' parameters $\varepsilon,\delta>0$
- This model is called "Agnostic" learning:
 - **(**) First, \mathcal{A} picks a Joint Distribution \overline{D} over $X \times \{0, 1\}$
 - **2** Second, \mathcal{L} draws *labeled* samples $(x, y) \sim \overline{D}$
 - ${f 0}$ Based on the received sample S, ${\cal L}$ outputs a guess for closest in H to ar D
- \mathcal{L} wins if their output $\mathcal{L}(S)$ is a good guess for \overline{D} :

$$\begin{split} \operatorname{err}_{\bar{D}}(\mathcal{L}(S)) &\coloneqq \Pr_{(x,y) \sim \bar{D}}[\mathcal{L}(S)(x) \neq y] \leq OPT + \varepsilon\\ OPT &\coloneqq \min_{h \in H} \{\operatorname{err}_{\bar{D}}(h)\} \end{split}$$

• ${\cal L}$ has a winning strategy if they win whp for any choice of ${ar D}$

$$\forall \bar{D}: \quad \Pr_{S \sim \bar{D}}[\mathsf{err}_{\bar{D}}(\mathcal{L}(S)) \le OPT + \varepsilon] \ge 1 - \delta$$

Agnostic Learning (Formalized)

- $\bullet\,$ Fix an 'accuracy' and 'confidence' parameters $\varepsilon,\delta>0$
- This model is called "Agnostic" learning:
 - **(**) First, \mathcal{A} picks a Joint Distribution \overline{D} over $X \times \{0, 1\}$
 - **2** Second, \mathcal{L} draws *labeled* samples $(x, y) \sim \overline{D}$
 - **③** Based on the received sample S, $\mathcal L$ outputs a guess for closest in H to ar D
- \mathcal{L} wins if their output $\mathcal{L}(S)$ is a good guess for \overline{D} :

$$\begin{split} \operatorname{err}_{\bar{D}}(\mathcal{L}(S)) &\coloneqq \Pr_{(x,y) \sim \bar{D}}[\mathcal{L}(S)(x) \neq y] \leq OPT + \varepsilon \\ OPT &\coloneqq \min_{h \in H} \{\operatorname{err}_{\bar{D}}(h)\} \end{split}$$

• \mathcal{L} has a **winning strategy** if they win whp for any choice of \bar{D}

$$\forall \bar{D}: \quad \Pr_{S \sim \bar{D}}[\mathsf{err}_{\bar{D}}(\mathcal{L}(S)) \leq OPT + \varepsilon] \geq 1 - \delta$$

Definition (Agnostic PAC-Learning)

(X, H) is Agnostically learnable with "sample complexity" $m(\varepsilon, \delta)$ if $\forall \varepsilon, \delta > 0$, \mathcal{L} has a winning strategy using at most $m(\varepsilon, \delta)$ samples

• Agnostic learning seems much harder than Realizable learning...

- Agnostic learning seems much harder than Realizable learning...
 - Adversary has strictly more power!

- Agnostic learning seems much harder than Realizable learning...
 - Adversary has strictly more power!
- But it turns out they're equivalent!

- Agnostic learning seems much harder than Realizable learning...
 - Adversary has strictly more power!
- But it turns out they're equivalent!

Theorem (Blumer, Ehrenfeucht, Haussler, Warmuth '89, Haussler '92)

(X,H) is Realizably learnable $\iff (X,H)$ is Agnostically learnable

- Agnostic learning seems much harder than Realizable learning...
 - Adversary has strictly more power!
- But it turns out they're equivalent!

Theorem (Blumer, Ehrenfeucht, Haussler, Warmuth '89, Haussler '92) (X, H) is Realizably learnable $\iff (X, H)$ is Agnostically learnable

- Proof relies on uniform convergence
 - (Empirical error approaches true error for all $h \in H$ simultaneously)

- Agnostic learning seems much harder than Realizable learning...
 - Adversary has strictly more power!
- But it turns out they're equivalent!

Theorem (Blumer, Ehrenfeucht, Haussler, Warmuth '89, Haussler '92)

(X,H) is Realizably learnable $\iff (X,H)$ is Agnostically learnable

- Proof relies on uniform convergence
 - (Empirical error approaches true error for all $h \in H$ simultaneously)
- Unfortunately, uniform convergence fails beyond the PAC-model
 - e.g. distribution-dependent learning; general loss functions...

Is the equivalence of the realizable and agnostic models a fundamental property of learnability?

Is the equivalence of the realizable and agnostic models a fundamental property of learnability?

- Despite no uniform convergence, equivalence always seems to hold!
 - Distribution-dependent learning [BI91]
 - Regression [BLW96]
 - Private learning [BNS14]
 - Multi-class learning [DMY16]
 - Robust learning [MHS19]
 - Semi-private learning [ABM19]
 - Private prediction [DF20]
 - Stable learning [DF20]
 - Partial learning [AHHM21]

Is the equivalence of the realizable and agnostic models a fundamental property of learnability?

- Despite no uniform convergence, equivalence always seems to hold!
 - Distribution-dependent learning [BI91]
 - Regression [BLW96]
 - Private learning [BNS14]
 - Multi-class learning [DMY16]
 - Robust learning [MHS19]
 - Semi-private learning [ABM19]
 - Private prediction [DF20]
 - Stable learning [DF20]
 - Partial learning [AHHM21]

Can we explain this phenomenon more generally?

Background

- Realizable PAC Learning
- Agnostic Learning
- Realizable \iff Agnostic Learning

2 The Reduction

- Algorithm and Analysis
- Application: Distribution Dependent Learning
- Application: General Loss Functions

Beyond Agnostic Learning

- Property Generalization
- Application: Semi-Private Learning

Open Problems!!

• Let \mathcal{L} be a realizable learner for H on $n(\varepsilon, \delta)$ samples

- Let \mathcal{L} be a realizable learner for H on $n(\varepsilon, \delta)$ samples
- We'll build an agnostic learner for H in two main steps:

- Let \mathcal{L} be a realizable learner for H on $n(\varepsilon, \delta)$ samples
- We'll build an agnostic learner for H in two main steps:
 - **Step 1: Build a "cover" of** *H*

- Let \mathcal{L} be a realizable learner for H on $n(\varepsilon, \delta)$ samples
- We'll build an agnostic learner for H in two main steps:
 - **Step 1: Build a "cover" of** *H*
 - Using unlabeled samples and the learner $\mathcal{L}...$
 - Construct a small (finite) subset that "approximates" H

- Let \mathcal{L} be a realizable learner for H on $n(\varepsilon, \delta)$ samples
- We'll build an agnostic learner for H in two main steps:
 - **Step 1: Build a "cover" of** *H*
 - Using unlabeled samples and the learner $\mathcal{L}...$
 - Construct a small (finite) subset that "approximates" H
 - Step 2: Learn the cover

- Let \mathcal{L} be a realizable learner for H on $n(\varepsilon, \delta)$ samples
- We'll build an agnostic learner for H in two main steps:
 - **Step 1: Build a "cover" of** *H*
 - Using unlabeled samples and the learner $\mathcal{L}...$
 - Construct a small (finite) subset that "approximates" H
 - Step 2: Learn the cover
 - Using labeled samples, output a good hypothesis in the cover

Step 1: Non-Uniform Covering

• A set C is an ε -cover for (D, H)

• A set C is an $\varepsilon\text{-cover}$ for (D,H) if for every $h\in H,$ there exists $h'\in C$ such that

```
• A set C is an \varepsilon-cover for (D, H)
if for every h \in H, there exists h' \in C such that
h' is close to h under D
```

```
• A set C is an \varepsilon-cover for (D, H)
if for every h \in H, there exists h' \in C such that
h' is close to h under D
```

 $\forall h \in H \; \exists h' \in C \colon \operatorname{err}_{D,h}(h') \leq \varepsilon$

```
• A set C is an \varepsilon-cover for (D, H)
if for every h \in H, there exists h' \in C such that
h' is close to h under D
\forall h \in H \exists h' \in C : \operatorname{err}_{D,h}(h') \leq \varepsilon
```

• We instead construct a a non-uniform (ε, δ) -cover for (D, H)

```
• A set C is an \varepsilon-cover for (D, H)
if for every h \in H, there exists h' \in C such that
h' is close to h under D
\forall h \in H \exists h' \in C : \operatorname{err}_{D,h}(h') \leq \varepsilon
```

• We instead construct a a non-uniform (ε, δ) -cover for (D, H) a finite set C with the following guarantee:

```
• A set C is an \varepsilon-cover for (D, H)
if for every h \in H, there exists h' \in C such that
h' is close to h under D
\forall h \in H \exists h' \in C : \operatorname{err}_{D,h}(h') \leq \varepsilon
```

 We instead construct a a non-uniform (ε, δ)-cover for (D, H) a finite set C with the following guarantee: for every fixed hypothesis h ∈ H,

```
• A set C is an \varepsilon-cover for (D, H)
if for every h \in H, there exists h' \in C such that
h' is close to h under D
\forall h \in H \exists h' \in C : \operatorname{err}_{D,h}(h') \leq \varepsilon
```

```
• A set C is an \varepsilon-cover for (D, H)
if for every h \in H, there exists h' \in C such that
h' is close to h under D
\forall h \in H \exists h' \in C : \operatorname{err}_{D,h}(h') \leq \varepsilon
```

$$\forall h \in H \Pr_C[\exists h' \in C : \operatorname{err}_{D,h}(h') \leq \varepsilon] \geq 1 - \delta.$$

```
• A set C is an \varepsilon-cover for (D, H)
if for every h \in H, there exists h' \in C such that
h' is close to h under D
\forall h \in H \exists h' \in C : \operatorname{err}_{D,h}(h') \leq \varepsilon
```

$$\forall h \in H \ \Pr_C[\exists h' \in C \colon \operatorname{err}_{D,h}(h') \leq \varepsilon] \geq 1 - \delta \,.$$

• Note this does not mean C is an ε -cover for (D, H) with high probability!

```
• A set C is an \varepsilon-cover for (D, H)
if for every h \in H, there exists h' \in C such that
h' is close to h under D
\forall h \in H \exists h' \in C : \operatorname{err}_{D,h}(h') \leq \varepsilon
```

$$\forall h \in H \ \Pr_C[\exists h' \in C \colon \operatorname{err}_{D,h}(h') \leq \varepsilon] \geq 1 - \delta \,.$$

- Note this does not mean C is an ε -cover for (D, H) with high probability!
 - C is likely to miss some hypotheses each time

```
• A set C is an \varepsilon-cover for (D, H)
if for every h \in H, there exists h' \in C such that
h' is close to h under D
\forall h \in H \exists h' \in C : \operatorname{err}_{D,h}(h') \leq \varepsilon
```

$$\forall h \in H \ \Pr_C[\exists h' \in C : \operatorname{err}_{D,h}(h') \leq \varepsilon] \geq 1 - \delta.$$

- Note this does not mean C is an ε -cover for (D, H) with high probability!
 - C is likely to miss some hypotheses each time
 - Covering all hypotheses simultaneously requires additional samples

• Recall Adversary picks joint distribution \bar{D} (w/ marginal \bar{D}_X)

- Recall Adversary picks joint distribution \bar{D} (w/ marginal \bar{D}_X)
- Why care about bounded non-uniform covers?
 - \bullet For every fixed $h\in H,$ C contains h' close to h whp

- Recall Adversary picks joint distribution \bar{D} (w/ marginal \bar{D}_X)
- Why care about bounded non-uniform covers?
 - For every fixed $h \in H$, C contains h' close to h whp
 - This is true for h_{OPT} , the optimal hypothesis! (err_{\bar{D}}(h_{OPT}) = OPT)

- Recall Adversary picks joint distribution \overline{D} (w/ marginal \overline{D}_X)
- Why care about bounded non-uniform covers?
 - For every fixed $h \in H$, C contains h' close to h whp
 - This is true for h_{OPT} , the optimal hypothesis! (err_{\bar{D}}(h_{OPT}) = OPT)
- In other words, C probably contains h^* close to h_{OPT} satisfying:

 $\Pr_{x \sim \bar{D}_X}[h^*(x) \neq h_{OPT}(x)] \le \varepsilon/2$

- Recall Adversary picks joint distribution \overline{D} (w/ marginal \overline{D}_X)
- Why care about bounded non-uniform covers?
 - For every fixed $h \in H$, C contains h' close to h whp
 - This is true for h_{OPT} , the optimal hypothesis! (err_{\bar{D}}(h_{OPT}) = OPT)
- In other words, C probably contains h^{\ast} close to h_{OPT} satisfying:

 $\Pr_{x \sim \bar{D}_X}[h^*(x) \neq h_{OPT}(x)] \leq \varepsilon/2 \implies \mathsf{err}_{\bar{D}}(h^*) \leq OPT + \varepsilon/2$

- Recall Adversary picks joint distribution \overline{D} (w/ marginal \overline{D}_X)
- Why care about bounded non-uniform covers?
 - For every fixed $h \in H$, C contains h' close to h whp
 - This is true for h_{OPT} , the optimal hypothesis! (err_{\bar{D}}(h_{OPT}) = OPT)
- In other words, C probably contains h^{\ast} close to h_{OPT} satisfying:

 $\Pr_{x \sim \bar{D}_X}[h^*(x) \neq h_{OPT}(x)] \leq \varepsilon/2 \implies \operatorname{err}_{\bar{D}}(h^*) \leq OPT + \varepsilon/2$

• Now if we can agnostically learn C to $\varepsilon/2$ error, we get h_{out} :

 $\operatorname{err}_{\bar{D}}(h_{out}) \leq OPT + \varepsilon$

- Recall Adversary picks joint distribution \bar{D} (w/ marginal \bar{D}_X)
- Why care about bounded non-uniform covers?
 - For every fixed $h \in H$, C contains h' close to h whp
 - This is true for h_{OPT} , the optimal hypothesis! (err_{\bar{D}}(h_{OPT}) = OPT)
- In other words, C probably contains h^{\ast} close to h_{OPT} satisfying:

 $\Pr_{x \sim \bar{D}_X}[h^*(x) \neq h_{OPT}(x)] \leq \varepsilon/2 \implies \operatorname{err}_{\bar{D}}(h^*) \leq OPT + \varepsilon/2$

• Now if we can agnostically learn C to $\varepsilon/2$ error, we get h_{out} :

 $\mathrm{err}_{\bar{D}}(h_{out}) \leq OPT + \varepsilon$

- Since C is finite, we can use Empirical Risk Minimization:
 - For any fixed $h \in H$, empirical error approaches true error
 - Union bounding over C, true for all $h \in C$ simultaneously

• So how can we build a bounded non-uniform ($\varepsilon/2,\delta/2)\text{-cover}?$

- So how can we build a bounded non-uniform ($\varepsilon/2,\delta/2)\text{-cover?}$
 - It turns out realizable learning is all you need!

- So how can we build a bounded non-uniform ($\varepsilon/2,\delta/2)\text{-cover?}$
 - It turns out realizable learning is all you need!
- Consider the following two-step algorithm for constructing C:

- So how can we build a bounded non-uniform ($\varepsilon/2,\delta/2)\text{-cover?}$
 - It turns out realizable learning is all you need!
- Consider the following two-step algorithm for constructing C:

- So how can we build a bounded non-uniform ($\varepsilon/2,\delta/2)\text{-cover?}$
 - It turns out realizable learning is all you need!
- Consider the following two-step algorithm for constructing C:
 - Draw an unlabeled sample $S_U \sim \bar{D}_X^{n(\varepsilon/2,\delta/2)}$
 - **2** Run \mathcal{L} on all possible labelings of S_U to get:

 $C \coloneqq \{\mathcal{L}(S_U, h(S_U)) : h \in H\}$

- So how can we build a bounded non-uniform ($\varepsilon/2,\delta/2)\text{-cover?}$
 - It turns out realizable learning is all you need!
- Consider the following two-step algorithm for constructing C:
 - Draw an unlabeled sample $S_U \sim \bar{D}_X^{n(\varepsilon/2,\delta/2)}$
 - **2** Run \mathcal{L} on all possible labelings of \vec{S}_U to get:

 $C \coloneqq \{\mathcal{L}(S_U, h(S_U)) : h \in H\}$

• Claim 1: $|C| < \infty$

- So how can we build a bounded non-uniform ($\varepsilon/2,\delta/2)\text{-cover?}$
 - It turns out realizable learning is all you need!
- Consider the following two-step algorithm for constructing C:
 - Draw an unlabeled sample $S_U \sim \bar{D}_X^{n(\varepsilon/2,\delta/2)}$
 - **2** Run \mathcal{L} on all possible labelings of \vec{S}_U to get:

 $C \coloneqq \{\mathcal{L}(S_U, h(S_U)) : h \in H\}$

- Claim 1: $|C| < \infty$
 - ${\ }$ There are at most $2^{|S_U|}$ labelings of S_U

Step 1(b): Realizable Learning \rightarrow Non-Uniform Covering

- So how can we build a bounded non-uniform ($\varepsilon/2,\delta/2)\text{-cover?}$
 - It turns out realizable learning is all you need!
- Consider the following two-step algorithm for constructing C:
 - Draw an unlabeled sample $S_U \sim \bar{D}_X^{n(\varepsilon/2,\delta/2)}$
 - **2** Run \mathcal{L} on all possible labelings of S_U to get:

 $C \coloneqq \{\mathcal{L}(S_U, h(S_U)) : h \in H\}$

- Claim 1: $|C| < \infty$
 - ${\ }$ There are at most $2^{|S_U|}$ labelings of S_U
- Claim 2: C is a Non-Uniform $(\varepsilon/2, \delta/2)$ -cover:

Step 1(b): Realizable Learning \rightarrow Non-Uniform Covering

- So how can we build a bounded non-uniform ($\varepsilon/2,\delta/2)\text{-cover?}$
 - It turns out realizable learning is all you need!
- Consider the following two-step algorithm for constructing C:
 - Draw an unlabeled sample $S_U \sim \bar{D}_X^{n(\varepsilon/2,\delta/2)}$
 - **2** Run \mathcal{L} on all possible labelings of S_U to get:

 $C \coloneqq \{\mathcal{L}(S_U, h(S_U)) : h \in H\}$

- Claim 1: $|C| < \infty$
 - ${\ }$ There are at most $2^{|S_U|}$ labelings of S_U
- Claim 2: C is a Non-Uniform $(\varepsilon/2, \delta/2)$ -cover:
 - Fix any $h \in H$, realizable learning promises that:

$$\Pr_{S_U \sim \bar{D}_X^n}[\mathsf{err}_{\bar{D},h}(\mathcal{L}(S_U, h(S_U))) \le \varepsilon/2] \ge 1 - \delta/2$$

Step 1(b): Realizable Learning \rightarrow Non-Uniform Covering

- So how can we build a bounded non-uniform ($\varepsilon/2,\delta/2)\text{-cover?}$
 - It turns out realizable learning is all you need!
- Consider the following two-step algorithm for constructing C:
 - Draw an unlabeled sample $S_U \sim \bar{D}_X^{n(\varepsilon/2,\delta/2)}$
 - **2** Run \mathcal{L} on all possible labelings of S_U to get:

 $C \coloneqq \{\mathcal{L}(S_U, h(S_U)) : h \in H\}$

- Claim 1: $|C| < \infty$
 - ${\ }$ There are at most $2^{|S_U|}$ labelings of S_U
- Claim 2: C is a Non-Uniform $(\varepsilon/2, \delta/2)$ -cover:
 - Fix any $h \in H$, realizable learning promises that:

$$\Pr_{S_U \sim \bar{D}_X^n} [\operatorname{err}_{\bar{D},h}(\mathcal{L}(S_U, h(S_U))) \le \varepsilon/2] \ge 1 - \delta/2$$

• C contains $\mathcal{L}(S_U, h(S_U))$ for each $h \in H$, so we're done!

Putting it All Together

• Let's review the full algorithm:

- Let's review the full algorithm:
 - Adversary picks joint distribution \bar{D} (w/ marginal \bar{D}_X)

- Let's review the full algorithm:
 - Adversary picks joint distribution \bar{D} (w/ marginal \bar{D}_X)
 - \bullet Given a realizable learner ${\cal L}$ w/ sample complexity $n(\varepsilon,\delta)$ we...

- Let's review the full algorithm:
 - Adversary picks joint distribution \bar{D} (w/ marginal \bar{D}_X)
 - Given a realizable learner \mathcal{L} w/ sample complexity $n(\varepsilon, \delta)$ we...
 - Step 1: Build a Non-Uniform Cover

- Let's review the full algorithm:
 - Adversary picks joint distribution \bar{D} (w/ marginal \bar{D}_X)
 - \bullet Given a realizable learner $\mathcal L$ w/ sample complexity $n(\varepsilon,\delta)$ we...
 - Step 1: Build a Non-Uniform Cover
 - Draw an unlabeled sample $S_U \sim \bar{D}_X^{n(arepsilon/2,\delta/2)}$

- Let's review the full algorithm:
 - Adversary picks joint distribution \bar{D} (w/ marginal \bar{D}_X)
 - Given a realizable learner \mathcal{L} w/ sample complexity $n(\varepsilon, \delta)$ we...
 - Step 1: Build a Non-Uniform Cover
 - \bullet Draw an unlabeled sample $S_U \sim \bar{D}_X^{n(\varepsilon/2,\delta/2)}$
 - Run \mathcal{L} on all possible labelings of S_U :

$$C \coloneqq \{\mathcal{L}(S_U, h(S_U)) : h \in H\}$$

- Let's review the full algorithm:
 - Adversary picks joint distribution \bar{D} (w/ marginal \bar{D}_X)
 - Given a realizable learner \mathcal{L} w/ sample complexity $n(\varepsilon, \delta)$ we...
 - Step 1: Build a Non-Uniform Cover
 - \bullet Draw an unlabeled sample $S_U \sim \bar{D}_{_X}^{n(\varepsilon/2,\delta/2)}$
 - Run \mathcal{L} on all possible labelings of S_U :

$$C \coloneqq \{\mathcal{L}(S_U, h(S_U)) : h \in H\}$$

- Let's review the full algorithm:
 - Adversary picks joint distribution \bar{D} (w/ marginal \bar{D}_X)
 - Given a realizable learner \mathcal{L} w/ sample complexity $n(\varepsilon, \delta)$ we...
 - Step 1: Build a Non-Uniform Cover
 - Draw an unlabeled sample $S_U \sim \bar{D}_{_{X}}^{n(\varepsilon/2,\delta/2)}$
 - Run \mathcal{L} on all possible labelings of S_U :

$$C \coloneqq \{\mathcal{L}(S_U, h(S_U)) : h \in H\}$$

• Draw a labeled sample $S_L \sim \bar{D}^m$, $m \approx \log(|C|/\delta)/\varepsilon^2$

- Let's review the full algorithm:
 - Adversary picks joint distribution \bar{D} (w/ marginal \bar{D}_X)
 - Given a realizable learner \mathcal{L} w/ sample complexity $n(\varepsilon, \delta)$ we...
 - Step 1: Build a Non-Uniform Cover
 - Draw an unlabeled sample $S_U \sim \bar{D}_{_{X}}^{n(\varepsilon/2,\delta/2)}$
 - Run \mathcal{L} on all possible labelings of S_U :

$$C \coloneqq \{\mathcal{L}(S_U, h(S_U)) : h \in H\}$$

- Draw a labeled sample $S_L \sim \bar{D}^m$, $m \approx \log(|C|/\delta)/\varepsilon^2$
- Return hypothesis in ${\cal C}$ with minimum empirical error over S_L

- Let's review the full algorithm:
 - Adversary picks joint distribution \bar{D} (w/ marginal \bar{D}_X)
 - Given a realizable learner \mathcal{L} w/ sample complexity $n(\varepsilon, \delta)$ we...
 - Step 1: Build a Non-Uniform Cover
 - Draw an unlabeled sample $S_U \sim \bar{D}_X^{n(\varepsilon/2,\delta/2)}$
 - Run \mathcal{L} on all possible labelings of S_U :

$$C \coloneqq \{\mathcal{L}(S_U, h(S_U)) : h \in H\}$$

- Draw a labeled sample $S_L \sim \bar{D}^m$, $m \approx \log(|C|/\delta)/\varepsilon^2$
- Return hypothesis in ${\cal C}$ with minimum empirical error over S_L
- Outputs h_{out} satisfies $\operatorname{err}_{\overline{D}}(h_{out}) \leq OPT + \varepsilon \text{ w/ high probability!}$

- This reduction uses no model-specific properties at all!
 - No reliance on uniform convergence, sample compression, etc.

• This reduction uses no model-specific properties at all!

- No reliance on uniform convergence, sample compression, etc.
- This allows for a unifying framework for many models:
 - Distribution-dependent learning
 - Regression/Lipschitz loss
 - Robust learning
 - Semi-private learning
 - Private prediction
 - Stable learning
 - Partial learning
 - Statistical Query model
 - Fairness

• This reduction uses no model-specific properties at all!

- No reliance on uniform convergence, sample compression, etc.
- This allows for a unifying framework for many models:
 - Distribution-dependent learning
 - Regression/Lipschitz loss
 - Robust learning
 - Semi-private learning
 - Private prediction
 - Stable learning
 - Partial learning
 - Statistical Query model
 - Fairness

These results were mostly known: how about some new applications?

- In practice, PAC-Learning is often considered too worst-case
 - ${\scriptstyle \bullet}$ One common relaxation is to make distributional assumptions on X

- In practice, PAC-Learning is often considered too worst-case
 - \bullet One common relaxation is to make distributional assumptions on X
- \bullet We can model this generally by the learnability of triples (\mathscr{D},X,H)
 - Here ${\mathscr D}$ is a fixed family of distributions over X
 - The Adversary may only pick distributions from ${\mathscr D}$

- In practice, PAC-Learning is often considered too worst-case
 - \bullet One common relaxation is to make distributional assumptions on X
- \bullet We can model this generally by the learnability of triples (\mathscr{D},X,H)
 - Here ${\mathscr D}$ is a fixed family of distributions over X
 - The Adversary may only pick distributions from ${\mathscr D}$

Uniform Convergence does not characterize learnability in this model.

- In practice, PAC-Learning is often considered too worst-case
 - \bullet One common relaxation is to make distributional assumptions on X
- \bullet We can model this generally by the learnability of triples (\mathscr{D},X,H)
 - Here ${\mathscr D}$ is a fixed family of distributions over X
 - The Adversary may only pick distributions from ${\mathscr D}$

Uniform Convergence does not characterize learnability in this model.

Proposition (Benedek and Itai '91)

- In practice, PAC-Learning is often considered too worst-case
 - One common relaxation is to make distributional assumptions on X
- \bullet We can model this generally by the learnability of triples (\mathscr{D},X,H)
 - Here ${\mathscr D}$ is a fixed family of distributions over X
 - The Adversary may only pick distributions from ${\mathscr D}$

Uniform Convergence does not characterize learnability in this model.

Proposition (Benedek and Itai '91)

There exists a learnable class (D, X, H) over binary labels and classification loss without the uniform convergence property.

• X = [0, 1], $Y = \{0, 1\}$, D be the uniform distribution over X.

- In practice, PAC-Learning is often considered too worst-case
 - One common relaxation is to make distributional assumptions on X
- \bullet We can model this generally by the learnability of triples (\mathscr{D},X,H)
 - ${\, \bullet \,}$ Here ${\mathscr D}$ is a fixed family of distributions over X
 - The Adversary may only pick distributions from ${\mathscr D}$

Uniform Convergence does not characterize learnability in this model.

Proposition (Benedek and Itai '91)

- $X = [0, 1], Y = \{0, 1\}, D$ be the uniform distribution over X.
- H = indicator functions for all finite sets $S \subset X$ and X

- In practice, PAC-Learning is often considered too worst-case
 - One common relaxation is to make distributional assumptions on X
- \bullet We can model this generally by the learnability of triples (\mathscr{D},X,H)
 - ${\, \bullet \,}$ Here ${\mathscr D}$ is a fixed family of distributions over X
 - The Adversary may only pick distributions from ${\mathscr D}$

Uniform Convergence does not characterize learnability in this model.

Proposition (Benedek and Itai '91)

- $X = [0, 1], Y = \{0, 1\}, D$ be the uniform distribution over X.
- $\bullet~H=$ indicator functions for all finite sets $S\subset X$ and X
- Learn in single sample

- In practice, PAC-Learning is often considered too worst-case
 - One common relaxation is to make distributional assumptions on X
- \bullet We can model this generally by the learnability of triples (\mathscr{D},X,H)
 - Here ${\mathscr D}$ is a fixed family of distributions over X
 - The Adversary may only pick distributions from ${\mathscr D}$

Uniform Convergence does not characterize learnability in this model.

Proposition (Benedek and Itai '91)

- $X = [0, 1], Y = \{0, 1\}, D$ be the uniform distribution over X.
- H = indicator functions for all finite sets $S \subset X$ and X
- Learn in single sample
- Bad empirical estimate: hypothesis whose support is given by sample.

What characterizes learnability of (\mathcal{D}, X, H) when \mathcal{D} is family of distributions?

• Initial motivation for this work, very little is known!

- Initial motivation for this work, very little is known!
 - Uniform Convergence does not characterize learnability in this model.

- Initial motivation for this work, very little is known!
 - Uniform Convergence does not characterize learnability in this model.
 - UBME: Finite ε -cover for (D, H) for every distribution $D \in \mathscr{D}$

- Initial motivation for this work, very little is known!
 - Uniform Convergence does not characterize learnability in this model.
 - UBME: Finite ε -cover for (D, H) for every distribution $D \in \mathscr{D}$
 - Necessary for learnability

- Initial motivation for this work, very little is known!
 - Uniform Convergence does not characterize learnability in this model.
 - UBME: Finite ε -cover for (D, H) for every distribution $D \in \mathscr{D}$
 - Necessary for learnability
 - Sufficient for learnability when ${\mathscr D}$ is set of all distributions or singleton.

- Initial motivation for this work, very little is known!
 - Uniform Convergence does not characterize learnability in this model.
 - UBME: Finite ε -cover for (D, H) for every distribution $D \in \mathscr{D}$
 - Necessary for learnability
 - Sufficient for learnability when ${\mathscr D}$ is set of all distributions or singleton.
 - However, not sufficient when \mathscr{D} is an arbitrary distribution family [Dudley, Kulkarni, Richardson, Zeitouni '94]

- Initial motivation for this work, very little is known!
 - Uniform Convergence does not characterize learnability in this model.
 - UBME: Finite ε -cover for (D, H) for every distribution $D \in \mathscr{D}$
 - Necessary for learnability
 - Sufficient for learnability when ${\mathscr D}$ is set of all distributions or singleton.
 - However, not sufficient when \mathscr{D} is an arbitrary distribution family [Dudley, Kulkarni, Richardson, Zeitouni '94]
- Can we use our tools to say more about this model?

What characterizes learnability of (\mathcal{D}, X, H) when \mathcal{D} is family of distributions?

- Initial motivation for this work, very little is known!
 - Uniform Convergence does not characterize learnability in this model.
 - UBME: Finite ε -cover for (D, H) for every distribution $D \in \mathscr{D}$
 - Necessary for learnability
 - Sufficient for learnability when ${\mathscr D}$ is set of all distributions or singleton.
 - However, not sufficient when \mathscr{D} is an arbitrary distribution family [Dudley, Kulkarni, Richardson, Zeitouni '94]
- Can we use our tools to say more about this model?

Our reduction still works perfectly well!

Theorem (\mathscr{D}, X, H) is Realizably learnable $\iff (\mathscr{D}, X, H)$ is Agnostically learnable

General Loss Functions

• Many interesting learning problems have more involved notions of loss

General Loss Functions

- Many interesting learning problems have more involved notions of loss
 - In regression, error is measured wrt ℓ_p -loss
 - In robust learning, error is measured wrt robust loss

General Loss Functions

- Many interesting learning problems have more involved notions of loss
 - In regression, error is measured wrt ℓ_p -loss
 - In robust learning, error is measured wrt robust loss
- For classification loss and finite label space, learnability is characterized by uniform convergence.

- Many interesting learning problems have more involved notions of loss
 - In regression, error is measured wrt ℓ_p -loss
 - In robust learning, error is measured wrt robust loss
- For classification loss and finite label space, learnability is characterized by uniform convergence.
 - Realizably learnable \iff Agnostically learnable

- Many interesting learning problems have more involved notions of loss
 - In regression, error is measured wrt ℓ_p -loss
 - In robust learning, error is measured wrt robust loss
- For classification loss and finite label space, learnability is characterized by uniform convergence.
 - Realizably learnable \iff Agnostically learnable
 - Not true for general loss functions!

- Many interesting learning problems have more involved notions of loss
 - In regression, error is measured wrt ℓ_p -loss
 - In robust learning, error is measured wrt robust loss
- For classification loss and finite label space, learnability is characterized by uniform convergence.
 - Realizably learnable \iff Agnostically learnable
 - Not true for general loss functions!

Proposition

There exists a realizably learnable class (X, H, ℓ) over a finite label space Y which is not agnostically learnable.

- Many interesting learning problems have more involved notions of loss
 - In regression, error is measured wrt ℓ_p -loss
 - In robust learning, error is measured wrt robust loss
- For classification loss and finite label space, learnability is characterized by uniform convergence.
 - Realizably learnable \iff Agnostically learnable
 - Not true for general loss functions!

Proposition

There exists a realizably learnable class (X, H, ℓ) over a finite label space Y which is not agnostically learnable.

• X = natural numbers, $Y = \{0, 1\}^2$.

- Many interesting learning problems have more involved notions of loss
 - ${\scriptstyle \bullet}$ In regression, error is measured wrt $\ell_p{\rm -loss}$
 - In robust learning, error is measured wrt robust loss
- For classification loss and finite label space, learnability is characterized by uniform convergence.
 - Realizably learnable \iff Agnostically learnable
 - Not true for general loss functions!

Proposition

There exists a realizably learnable class (X, H, ℓ) over a finite label space Y which is not agnostically learnable.

- X =natural numbers, $Y = \{0, 1\}^2$.
- H = all functions which output the first bit as 0.

- Many interesting learning problems have more involved notions of loss
 - In regression, error is measured wrt ℓ_p -loss
 - In robust learning, error is measured wrt robust loss
- For classification loss and finite label space, learnability is characterized by uniform convergence.
 - Realizably learnable \iff Agnostically learnable
 - Not true for general loss functions!

Proposition

There exists a realizably learnable class (X, H, ℓ) over a finite label space Y which is not agnostically learnable.

- X = natural numbers, $Y = \{0, 1\}^2$.
- H = all functions which output the first bit as 0.
- loss function $\ell:Y\times Y\to \{0,1,c\}$ as

$$\ell((b_1, r_1), (b_2, r_2)) = \begin{cases} 0 & b_1 = b_2 \\ 1 & b_1 \neq b_2 \text{ and } r_1 = r_2 \\ c & \text{otherwise.} \end{cases}$$

• Identity of indiscernibles: $\ell(y_1, y_2) = 0 \iff y_1 = y_2$.

• Identity of indiscernibles: $\ell(y_1, y_2) = 0 \iff y_1 = y_2$.

This is the only case where the equivalence fails!

• Identity of indiscernibles: $\ell(y_1, y_2) = 0 \iff y_1 = y_2$.

This is the only case where the equivalence fails!

Theorem

• Identity of indiscernibles: $\ell(y_1, y_2) = 0 \iff y_1 = y_2$.

This is the only case where the equivalence fails!

Theorem

Suppose ℓ satisfies the identity of indiscernibles and Y is a finite label space. Then, $(\mathscr{D}, X, H, \ell)$ is Realizable learnable $\implies (\mathscr{D}, X, H, \ell)$ is agnostically learnable.

• We prove variants of equivalence for infinite labels:

• Identity of indiscernibles: $\ell(y_1, y_2) = 0 \iff y_1 = y_2$.

This is the only case where the equivalence fails!

Theorem

- We prove variants of equivalence for infinite labels:
 - Loss functions bounded from above and below

• Identity of indiscernibles: $\ell(y_1, y_2) = 0 \iff y_1 = y_2$.

This is the only case where the equivalence fails!

Theorem

- We prove variants of equivalence for infinite labels:
 - Loss functions bounded from above and below
 - Loss functions satisfying an approximate triangle inequality

• Identity of indiscernibles: $\ell(y_1, y_2) = 0 \iff y_1 = y_2$.

This is the only case where the equivalence fails!

Theorem

- We prove variants of equivalence for infinite labels:
 - Loss functions bounded from above and below
 - Loss functions satisfying an approximate triangle inequality
- Basic technique involves discretizing before applying reduction

Background

- Realizable PAC Learning
- Agnostic Learning
- \bullet Realizable \iff Agnostic Learning

Difference 2 The Reduction

- Algorithm and Analysis
- Application: Distribution Dependent Learning
- Application: General Loss Functions

Beyond Agnostic Learning

- Property Generalization
- Application: Semi-Private Learning

Open Problems!!

Property Generalization

- Let ${\cal P}$ denote a "property of learning algorithm"
 - e.g. noise-tolerance, privacy, robustness

- $\bullet~$ Let P denote a "property of learning algorithm"
 - e.g. noise-tolerance, privacy, robustness

We call P finitely-satisfiable if there exists a learner with property P for every finite class (X, H)

- $\bullet~$ Let P denote a "property of learning algorithm"
 - e.g. noise-tolerance, privacy, robustness

We call P finitely-satisfiable if there exists a learner with property P for every finite class (X, H)

• Agnostic learning is a finitely-satisfiable property by ERM

- $\bullet~$ Let P denote a "property of learning algorithm"
 - e.g. noise-tolerance, privacy, robustness

We call P finitely-satisfiable if there exists a learner with property P for every finite class (X, H)

- Agnostic learning is a finitely-satisfiable property by ERM
- Realizable vs agnostic learning is part of a more general phenomenon:

- $\bullet~$ Let P denote a "property of learning algorithm"
 - e.g. noise-tolerance, privacy, robustness

We call P finitely-satisfiable if there exists a learner with property P for every finite class (X, H)

- Agnostic learning is a finitely-satisfiable property by ERM
- Realizable vs agnostic learning is part of a more general phenomenon:

Informal Meta-Theorem (Property Generalization)

Let P be a finitely-satisfiable property and \mathcal{L} a realizable learner for (X, H). Then \mathcal{L} can be used as a subroutine to build a learner for (X, H) satisfying (a variant of) property P.

- $\bullet~$ Let P denote a "property of learning algorithm"
 - e.g. noise-tolerance, privacy, robustness

We call P finitely-satisfiable if there exists a learner with property P for every finite class (X, H)

- Agnostic learning is a finitely-satisfiable property by ERM
- Realizable vs agnostic learning is part of a more general phenomenon:

Informal Meta-Theorem (Property Generalization)

Let P be a finitely-satisfiable property and \mathcal{L} a realizable learner for (X, H). Then \mathcal{L} can be used as a subroutine to build a learner for (X, H) satisfying (a variant of) property P.

• Main idea: replace ERM with finite learner for property ${\cal P}$

• An algorithm is private if it is unlikely to change on similar samples

Application: Privacy

- An algorithm is private if it is unlikely to change on similar samples
- Privacy is a classic example of a finitely-satisfiable property
 - Any finite class (X, H) can be privately learned [McSherry and Talwar '07]

- An algorithm is private if it is unlikely to change on similar samples
- Privacy is a classic example of a finitely-satisfiable property
 - Any finite class (X, H) can be privately learned [McSherry and Talwar '07]
 - Algorithm is called the exponential mechanism (EM)

- An algorithm is private if it is unlikely to change on similar samples
- Privacy is a classic example of a finitely-satisfiable property
 - Any finite class (X, H) can be privately learned [McSherry and Talwar '07]
 - Algorithm is called the exponential mechanism (EM)
- If we learn our cover C using EM, we get a semi-private learner

- An algorithm is private if it is unlikely to change on similar samples
- Privacy is a classic example of a finitely-satisfiable property
 - Any finite class (X, H) can be privately learned [McSherry and Talwar '07]
 - Algorithm is called the exponential mechanism (EM)
- If we learn our cover C using EM, we get a semi-private learner
 - In this model, we have access to public unlabeled data

- An algorithm is private if it is unlikely to change on similar samples
- Privacy is a classic example of a finitely-satisfiable property
 - Any finite class (X, H) can be privately learned [McSherry and Talwar '07]
 - Algorithm is called the exponential mechanism (EM)
- If we learn our cover C using EM, we get a semi-private learner
 - In this model, we have access to public unlabeled data
 - Goal is to minimize amount of public data used (harder to gather)

- An algorithm is private if it is unlikely to change on similar samples
- Privacy is a classic example of a finitely-satisfiable property
 - Any finite class (X, H) can be privately learned [McSherry and Talwar '07]
 - Algorithm is called the exponential mechanism (EM)
- If we learn our cover C using EM, we get a semi-private learner
 - In this model, we have access to public unlabeled data
 - Goal is to minimize amount of public data used (harder to gather)

Theorem (Realizable \iff Semi-Private Learning)

If (X, H) is Realizably learnable, it is possible to privately learn (X, H) to any ε -accuracy using $O(1/\varepsilon)$ public (unlabeled) samples

- An algorithm is private if it is unlikely to change on similar samples
- Privacy is a classic example of a finitely-satisfiable property
 - Any finite class (X, H) can be privately learned [McSherry and Talwar '07]
 - Algorithm is called the exponential mechanism (EM)
- If we learn our cover C using EM, we get a semi-private learner
 - In this model, we have access to public unlabeled data
 - Goal is to minimize amount of public data used (harder to gather)

Theorem (Realizable \iff Semi-Private Learning)

If (X, H) is Realizably learnable, it is possible to privately learn (X, H) to any ε -accuracy using $O(1/\varepsilon)$ public (unlabeled) samples

• Result is tight when (X, H) cannot be privately learned [Alon, Bassily, Moran '19]

- An algorithm is private if it is unlikely to change on similar samples
- Privacy is a classic example of a finitely-satisfiable property
 - Any finite class (X, H) can be privately learned [McSherry and Talwar '07]
 - Algorithm is called the exponential mechanism (EM)
- If we learn our cover C using EM, we get a semi-private learner
 - In this model, we have access to public unlabeled data
 - Goal is to minimize amount of public data used (harder to gather)

Theorem (Realizable \iff Semi-Private Learning)

If (X, H) is Realizably learnable, it is possible to privately learn (X, H) to any ε -accuracy using $O(1/\varepsilon)$ public (unlabeled) samples

- Result is tight when (X, H) cannot be privately learned [Alon, Bassily, Moran '19]
 - Improves over [ABM19] by avoiding uniform convergence
 - Build a "uniform" cover and then learns the cover using EM.

- New blackbox reduction from agnostic to realizable learning
 - Provides unifying framework by avoiding model-specific assumptions
 - New results for models w/ no known characterizations
 - Proof goes through new notion of "non-uniform" covers

- New blackbox reduction from agnostic to realizable learning
 - Provides unifying framework by avoiding model-specific assumptions
 - New results for models w/ no known characterizations
 - Proof goes through new notion of "non-uniform" covers
- Open Problems
 - Characterizing learnability w/ arbitrary distributional assumptions

- New blackbox reduction from agnostic to realizable learning
 - · Provides unifying framework by avoiding model-specific assumptions
 - New results for models w/ no known characterizations
 - Proof goes through new notion of "non-uniform" covers
- Open Problems
 - Characterizing learnability w/ arbitrary distributional assumptions
 - There are a few models our techniques can't handle yet...
 - e.g. Private learning

- New blackbox reduction from agnostic to realizable learning
 - Provides unifying framework by avoiding model-specific assumptions
 - New results for models w/ no known characterizations
 - Proof goes through new notion of "non-uniform" covers
- Open Problems
 - Characterizing learnability w/ arbitrary distributional assumptions
 - There are a few models our techniques can't handle yet... e.g. Private learning
 - Connections between non-uniform covers and other randomized coverings

Max Hopkins

Daniel Kane

Shachar Lovett

Background

- Realizable PAC Learning
- Agnostic Learning
- \bullet Realizable \iff Agnostic Learning

2 The Reduction

- Algorithm and Analysis
- Application: Distribution Dependent Learning
- Application: General Loss Functions

Beyond Agnostic Learning

- Property Generalization
- Application: Semi-Private Learning

Open Problems!!

• ABM19 builds a "uniform" cover and then learns the cover using EM.

• ABM19 builds a "uniform" cover and then learns the cover using EM.

Definition (Uniform (ε, δ) -cover)

A distribution μ over the power set P(H) is a uniform (ε, δ) -cover if $C \sim \mu$ covers H with high probability

$$\Pr_{Cour}[C \text{ is an } \varepsilon \text{ -cover for } (D, X, H)] \ge 1 - \delta$$

• ABM19 builds a "uniform" cover and then learns the cover using EM.

Definition (Uniform (ε, δ) -cover)

A distribution μ over the power set P(H) is a uniform (ε, δ) -cover if $C \sim \mu$ covers H with high probability

$$\Pr_{C \sim u}[C \text{ is an } \varepsilon \text{ -cover for } (D, X, H)] \ge 1 - \delta$$

• Uniform: C covers h for every $h \in H$ simultaneously whp.

• ABM19 builds a "uniform" cover and then learns the cover using EM.

Definition (Uniform (ε, δ) -cover)

A distribution μ over the power set P(H) is a uniform (ε, δ) -cover if $C \sim \mu$ covers H with high probability

$$\Pr_{C \sim u}[C \text{ is an } \varepsilon \text{ -cover for } (D, X, H)] \ge 1 - \delta$$

- Uniform: C covers h for every $h \in H$ simultaneously whp.
- Non-uniform: C covers h whp for every $h \in H$.

• ABM19 builds a "uniform" cover and then learns the cover using EM.

Definition (Uniform (ε, δ) -cover)

A distribution μ over the power set P(H) is a uniform (ε, δ) -cover if $C \sim \mu$ covers H with high probability

```
\Pr_{C \sim \mu}[C \text{ is an } \varepsilon \text{ -cover for } (D, X, H)] \geq 1 - \delta
```

- Uniform: C covers h for every $h \in H$ simultaneously whp.
- Non-uniform: C covers h whp for every $h \in H$.

Building proper uniform cover is strictly harder than proper non-uniform cover!

• ABM19 builds a "uniform" cover and then learns the cover using EM.

Definition (Uniform (ε, δ) -cover)

A distribution μ over the power set P(H) is a uniform (ε, δ) -cover if $C \sim \mu$ covers H with high probability

```
\Pr_{C \sim \mu}[C \text{ is an } \varepsilon \text{ -cover for } (D, X, H)] \geq 1 - \delta
```

- Uniform: C covers h for every $h \in H$ simultaneously whp.
- Non-uniform: C covers h whp for every $h \in H$.

Building proper uniform cover is strictly harder than proper non-uniform cover!

Proposition

There exists triple (\mathcal{D}, X, H) such that

- Proper finite uniform cover requires at least $\Omega(1/\varepsilon \cdot \log(1/\varepsilon))$ samples.
- Proper finite non-uniform cover in at most $O(1/\varepsilon)$ samples.

• ABM19 builds a "uniform" cover and then learns the cover using EM.

Definition (Uniform (ε, δ) -cover)

A distribution μ over the power set P(H) is a uniform (ε, δ) -cover if $C \sim \mu$ covers H with high probability

```
\Pr_{C \sim \mu}[C \text{ is an } \varepsilon \text{ -cover for } (D, X, H)] \geq 1 - \delta
```

- Uniform: C covers h for every $h \in H$ simultaneously whp.
- Non-uniform: C covers h whp for every $h \in H$.

Building proper uniform cover is strictly harder than proper non-uniform cover!

Proposition

There exists triple (\mathcal{D}, X, H) such that

- Proper finite uniform cover requires at least $\Omega(1/\varepsilon \cdot \log(1/\varepsilon))$ samples.
- Proper finite non-uniform cover in at most $O(1/\varepsilon)$ samples.

• Open Problem: Does this gap also exist for improper covers?