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Learning (Setup)

Let X be a set (e.g. Rd)

Let H be a family of binary classifiers (e.g. halfspaces)

We will be interested in the “learnability” of classes (X,H)

Given random labeled samples (x, h(x)), can we identify h?
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Probably Approximately Correct (PAC) Learning

PAC-learning is a game between a “Learner” L and “Adversary” A:

1 First, A secretly picks a distribution D over X, and h ∈ H
2 Second, L draws labeled samples (x, h(x)) with x ∼ D
3 Based on received samples S, L outputs a guess for h

L wins the game if their output L(S) is close to h:

L has a winning strategy if they win whp for any choice of D, h
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PAC Learning (Formal)

Fix ‘accuracy’ and ‘confidence’ parameters ε, δ > 0
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2 Second, L draws labeled samples (x, h(x)) with x ∼ D
3 Based on received samples S, L outputs a guess for h

L wins the game if their output L(S) is close to h:

errD,h(L(S)) := Pr
x∼D

[L(S)(x) 6= h(x)] ≤ ε

L has a winning strategy if they win whp for any choice of D, h:

∀D,h : Pr
S

[errD,h(L(S)) ≤ ε] ≥ 1− δ

Definition (Realizable PAC-Learning)

(X,H) is Realizably learnable with “sample complexity” n(ε, δ) if ∀ε, δ > 0, L has a winning
strategy using at most n(ε, δ) samples
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Agnostic Learning (Informal)

Realizable learning forces the adversary to pick from H

A more realistic model drops this assumption:

The adversary can pick any labeling at all...
but the learner only needs to be close to the best hypothesis in H

This model is called “Agnostic” learning:

1 First, A picks a Joint Distribution D̄ over X × {0, 1}
2 Second, L draws labeled samples (x, y) ∼ D̄
3 Based on the received sample S, L outputs a guess for closest in H to D̄

L wins if their output L(S) is a good guess for D̄

L has a winning strategy if they win whp for any choice of D̄
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Agnostic Learning (Formalized)

Fix an ‘accuracy’ and ‘confidence’ parameters ε, δ > 0
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Equivalence of Realizable and Agnostic Learning

Agnostic learning seems much harder than Realizable learning...

Adversary has strictly more power!

But it turns out they’re equivalent!

Theorem (Blumer, Ehrenfeucht, Haussler, Warmuth ’89, Haussler ’92)

(X,H) is Realizably learnable ⇐⇒ (X,H) is Agnostically learnable

Proof relies on uniform convergence

(Empirical error approaches true error for all h ∈ H simultaneously)

Unfortunately, uniform convergence fails beyond the PAC-model

e.g. distribution-dependent learning; general loss functions...

Hopkins, Kane, Lovett, Mahajan 11 / 29



Equivalence of Realizable and Agnostic Learning

Agnostic learning seems much harder than Realizable learning...

Adversary has strictly more power!

But it turns out they’re equivalent!

Theorem (Blumer, Ehrenfeucht, Haussler, Warmuth ’89, Haussler ’92)

(X,H) is Realizably learnable ⇐⇒ (X,H) is Agnostically learnable

Proof relies on uniform convergence

(Empirical error approaches true error for all h ∈ H simultaneously)

Unfortunately, uniform convergence fails beyond the PAC-model

e.g. distribution-dependent learning; general loss functions...

Hopkins, Kane, Lovett, Mahajan 11 / 29



Equivalence of Realizable and Agnostic Learning

Agnostic learning seems much harder than Realizable learning...

Adversary has strictly more power!

But it turns out they’re equivalent!

Theorem (Blumer, Ehrenfeucht, Haussler, Warmuth ’89, Haussler ’92)

(X,H) is Realizably learnable ⇐⇒ (X,H) is Agnostically learnable

Proof relies on uniform convergence

(Empirical error approaches true error for all h ∈ H simultaneously)

Unfortunately, uniform convergence fails beyond the PAC-model

e.g. distribution-dependent learning; general loss functions...

Hopkins, Kane, Lovett, Mahajan 11 / 29



Equivalence of Realizable and Agnostic Learning

Agnostic learning seems much harder than Realizable learning...

Adversary has strictly more power!

But it turns out they’re equivalent!

Theorem (Blumer, Ehrenfeucht, Haussler, Warmuth ’89, Haussler ’92)

(X,H) is Realizably learnable ⇐⇒ (X,H) is Agnostically learnable

Proof relies on uniform convergence

(Empirical error approaches true error for all h ∈ H simultaneously)

Unfortunately, uniform convergence fails beyond the PAC-model

e.g. distribution-dependent learning; general loss functions...

Hopkins, Kane, Lovett, Mahajan 11 / 29



Equivalence of Realizable and Agnostic Learning

Agnostic learning seems much harder than Realizable learning...

Adversary has strictly more power!

But it turns out they’re equivalent!

Theorem (Blumer, Ehrenfeucht, Haussler, Warmuth ’89, Haussler ’92)

(X,H) is Realizably learnable ⇐⇒ (X,H) is Agnostically learnable

Proof relies on uniform convergence

(Empirical error approaches true error for all h ∈ H simultaneously)

Unfortunately, uniform convergence fails beyond the PAC-model

e.g. distribution-dependent learning; general loss functions...

Hopkins, Kane, Lovett, Mahajan 11 / 29



Equivalence of Realizable and Agnostic Learning

Agnostic learning seems much harder than Realizable learning...

Adversary has strictly more power!

But it turns out they’re equivalent!

Theorem (Blumer, Ehrenfeucht, Haussler, Warmuth ’89, Haussler ’92)

(X,H) is Realizably learnable ⇐⇒ (X,H) is Agnostically learnable

Proof relies on uniform convergence

(Empirical error approaches true error for all h ∈ H simultaneously)

Unfortunately, uniform convergence fails beyond the PAC-model

e.g. distribution-dependent learning; general loss functions...

Hopkins, Kane, Lovett, Mahajan 11 / 29



Main Question

Is the equivalence of the realizable and agnostic models a fundamental property of learnability?

Despite no uniform convergence, equivalence always seems to hold!

Distribution-dependent learning [BI91]
Regression [BLW96]
Private learning [BNS14]
Multi-class learning [DMY16]
Robust learning [MHS19]
Semi-private learning [ABM19]
Private prediction [DF20]
Stable learning [DF20]
Partial learning [AHHM21]

Can we explain this phenomenon more generally?
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A Direct Reduction in Two Steps

Let L be a realizable learner for H on n(ε, δ) samples

We’ll build an agnostic learner for H in two main steps:

1 Step 1: Build a “cover” of H

Using unlabeled samples and the learner L...
Construct a small (finite) subset that “approximates” H

2 Step 2: Learn the cover

Using labeled samples, output a good hypothesis in the cover
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Step 1: Non-Uniform Covering

A set C is an ε-cover for (D,H)

if for every h ∈ H, there exists h′ ∈ C such that
h′ is close to h under D

∀h ∈ H ∃h′ ∈ C : errD,h(h′) ≤ ε

We instead construct a a non-uniform (ε, δ)-cover for (D,H)
a finite set C with the following guarantee:
for every fixed hypothesis h ∈ H,
C contains h′ close to h with probability 1− δ

∀h ∈ H Pr
C

[∃h′ ∈ C : errD,h(h′) ≤ ε] ≥ 1− δ .

Note this does not mean C is an ε-cover for (D,H) with high probability!

C is likely to miss some hypotheses each time
Covering all hypotheses simultaneously requires additional samples
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Step 2: Non-Uniform Covering → Agnostic Learning

Recall Adversary picks joint distribution D̄ (w/ marginal D̄X)

Why care about bounded non-uniform covers?

For every fixed h ∈ H, C contains h′ close to h whp
This is true for hOPT , the optimal hypothesis! (errD̄(hOPT ) = OPT )

In other words, C probably contains h∗ close to hOPT satisfying:

Pr
x∼D̄X

[h∗(x) 6= hOPT (x)] ≤ ε/2 =⇒ errD̄(h∗) ≤ OPT + ε/2

Now if we can agnostically learn C to ε/2 error, we get hout:

errD̄(hout) ≤ OPT + ε

Since C is finite, we can use Empirical Risk Minimization:

For any fixed h ∈ H, empirical error approaches true error
Union bounding over C, true for all h ∈ C simultaneously
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Step 1(b): Realizable Learning → Non-Uniform Covering

So how can we build a bounded non-uniform (ε/2, δ/2)-cover?

It turns out realizable learning is all you need!

Consider the following two-step algorithm for constructing C:

1 Draw an unlabeled sample SU ∼ D̄
n(ε/2,δ/2)
X

2 Run L on all possible labelings of SU to get:

C := {L(SU , h(SU )) : h ∈ H}

Claim 1: |C| <∞
There are at most 2|SU | labelings of SU

Claim 2: C is a Non-Uniform (ε/2, δ/2)-cover:

Fix any h ∈ H, realizable learning promises that:

Pr
SU∼D̄n

X

[errD̄,h(L(SU , h(SU ))) ≤ ε/2] ≥ 1− δ/2

C contains L(SU , h(SU )) for each h ∈ H, so we’re done!
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Putting it All Together

Let’s review the full algorithm:

Adversary picks joint distribution D̄ (w/ marginal D̄X)
Given a realizable learner L w/ sample complexity n(ε, δ) we...

1 Step 1: Build a Non-Uniform Cover

Draw an unlabeled sample SU ∼ D̄
n(ε/2,δ/2)
X

Run L on all possible labelings of SU :

C := {L(SU , h(SU )) : h ∈ H}

2 Step 2: Learn the Non-Uniform Cover

Draw a labeled sample SL ∼ D̄m, m ≈ log(|C|/δ)/ε2
Return hypothesis in C with minimum empirical error over SL

Outputs hout satisfies errD̄(hout) ≤ OPT + ε w/ high probability!
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Unifying Framework

This reduction uses no model-specific properties at all!

No reliance on uniform convergence, sample compression, etc.

This allows for a unifying framework for many models:

Distribution-dependent learning
Regression/Lipschitz loss
Robust learning
Semi-private learning
Private prediction
Stable learning
Partial learning
Statistical Query model
Fairness

These results were mostly known: how about some new applications?

Hopkins, Kane, Lovett, Mahajan 19 / 29



Unifying Framework

This reduction uses no model-specific properties at all!

No reliance on uniform convergence, sample compression, etc.

This allows for a unifying framework for many models:

Distribution-dependent learning
Regression/Lipschitz loss
Robust learning
Semi-private learning
Private prediction
Stable learning
Partial learning
Statistical Query model
Fairness

These results were mostly known: how about some new applications?

Hopkins, Kane, Lovett, Mahajan 19 / 29



Unifying Framework

This reduction uses no model-specific properties at all!

No reliance on uniform convergence, sample compression, etc.

This allows for a unifying framework for many models:

Distribution-dependent learning
Regression/Lipschitz loss
Robust learning
Semi-private learning
Private prediction
Stable learning
Partial learning
Statistical Query model
Fairness

These results were mostly known: how about some new applications?

Hopkins, Kane, Lovett, Mahajan 19 / 29



Learning with Arbitrary Distributional Assumptions

In practice, PAC-Learning is often considered too worst-case

One common relaxation is to make distributional assumptions on X

We can model this generally by the learnability of triples (D , X,H)

Here D is a fixed family of distributions over X
The Adversary may only pick distributions from D

Uniform Convergence does not characterize learnability in this model.

Proposition (Benedek and Itai ‘91)

There exists a learnable class (D, X, H) over binary labels and classification loss without the
uniform convergence property.

X = [0, 1], Y = {0, 1}, D be the uniform distribution over X.

H = indicator functions for all finite sets S ⊂ X and X

Learn in single sample

Bad empirical estimate: hypothesis whose support is given by sample.
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Open Problem: Learnability with Arbitrary Distributional Assumptions

Open Problem

What characterizes learnability of (D , X,H) when D is family of distributions?

Initial motivation for this work, very little is known!

Uniform Convergence does not characterize learnability in this model.
UBME: Finite ε-cover for (D,H) for every distribution D ∈ D

Necessary for learnability
Sufficient for learnability when D is set of all distributions or singleton.
However, not sufficient when D is an arbitrary distribution family [Dudley, Kulkarni,
Richardson, Zeitouni ’94]

Can we use our tools to say more about this model?

Our reduction still works perfectly well!

Theorem

(D , X,H) is Realizably learnable ⇐⇒ (D , X,H) is Agnostically learnable
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General Loss Functions

Many interesting learning problems have more involved notions of loss

In regression, error is measured wrt `p-loss
In robust learning, error is measured wrt robust loss

For classification loss and finite label space, learnability is characterized by uniform
convergence.

Realizably learnable ⇐⇒ Agnostically learnable
Not true for general loss functions!

Proposition

There exists a realizably learnable class (X, H, `) over a finite label space Y which is not
agnostically learnable.

X = natural numbers, Y = {0, 1}2.

H = all functions which output the first bit as 0.

loss function ` : Y × Y → {0, 1, c} as

`((b1, r1), (b2, r2)) =


0 b1 = b2

1 b1 6= b2 and r1 = r2

c otherwise.
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General Loss Functions

Loss function in this example ` : Y × Y → R does not satisfy

Identity of indiscernibles: `(y1, y2) = 0 ⇐⇒ y1 = y2.

This is the only case where the equivalence fails!

Theorem

Suppose ` satisfies the identity of indiscernibles and Y is a finite label space. Then, (D , X,H, `)
is Realizable learnable =⇒ (D , X,H, `) is agnostically learnable.

We prove variants of equivalence for infinite labels:

Loss functions bounded from above and below
Loss functions satisfying an approximate triangle inequality

Basic technique involves discretizing before applying reduction
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Property Generalization

Let P denote a “property of learning algorithm”

e.g. noise-tolerance, privacy, robustness

Definition (Finitely-Satisfiable Properties)

We call P finitely-satisfiable if there exists a learner with property P for every finite class (X,H)

Agnostic learning is a finitely-satisfiable property by ERM

Realizable vs agnostic learning is part of a more general phenomenon:

Informal Meta-Theorem (Property Generalization)

Let P be a finitely-satisfiable property and L a realizable learner for (X,H). Then L can be used
as a subroutine to build a learner for (X,H) satisfying (a variant of) property P .

Main idea: replace ERM with finite learner for property P
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Application: Privacy

An algorithm is private if it is unlikely to change on similar samples

Privacy is a classic example of a finitely-satisfiable property

Any finite class (X,H) can be privately learned [McSherry and Talwar ’07]
Algorithm is called the exponential mechanism (EM)

If we learn our cover C using EM, we get a semi-private learner

In this model, we have access to public unlabeled data
Goal is to minimize amount of public data used (harder to gather)

Theorem (Realizable ⇐⇒ Semi-Private Learning)

If (X,H) is Realizably learnable, it is possible to privately learn (X,H) to any ε-accuracy using
O(1/ε) public (unlabeled) samples

Result is tight when (X,H) cannot be privately learned [Alon, Bassily, Moran ‘19]

Improves over [ABM19] by avoiding uniform convergence
Build a “uniform” cover and then learns the cover using EM.
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Thanks!

New blackbox reduction from agnostic to realizable learning

Provides unifying framework by avoiding model-specific assumptions
New results for models w/ no known characterizations
Proof goes through new notion of “non-uniform” covers

Open Problems

Characterizing learnability w/ arbitrary distributional assumptions
There are a few models our techniques can’t handle yet...
e.g. Private learning
Connections between non-uniform covers and other randomized coverings

Max Hopkins Daniel Kane Shachar Lovett
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Uniform vs Non-Uniform Covers

ABM19 builds a “uniform” cover and then learns the cover using EM.

Definition (Uniform (ε, δ)-cover)

A distribution µ over the power set P (H) is a uniform (ε, δ)-cover if C ∼ µ covers H with high
probability

Pr
C∼µ

[C is an ε -cover for (D,X,H)] ≥ 1− δ

.

Uniform: C covers h for every h ∈ H simultaneously whp.

Non-uniform: C covers h whp for every h ∈ H.

Building proper uniform cover is strictly harder than proper non-uniform cover!

Proposition

There exists triple (D , X,H) such that

Proper finite uniform cover requires at least Ω(1/ε · log(1/ε)) samples.

Proper finite non-uniform cover in at most O(1/ε) samples.

Open Problem: Does this gap also exist for improper covers?
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