Bilinear Classes: A Structural Framework for Provable Generalization in RL

Talk by: Gaurav Mahajan (UCSD)

Joint work with:

Simon Du

Shachar Lovett

Sham Kakade

Wen Sun

Jason Lee

Ruosong Wang

• Lots of recent empirical success.

- Lots of recent empirical success.
- Tackling large state spaces is a central challenge in RL.

- Lots of recent empirical success.
- Tackling large state spaces is a central challenge in RL.
 - Growing theoretical work on assumptions which allow dealing with large state spaces.

- Lots of recent empirical success.
- Tackling large state spaces is a central challenge in RL.
 - Growing theoretical work on assumptions which allow dealing with large state spaces.
 - Can we unify these assumptions?

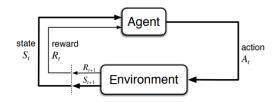
We aim to understand natural sufficient conditions which capture the learnability in a general class of RL models.

We aim to understand natural sufficient conditions which capture the learnability in a general class of RL models.

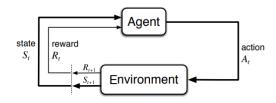
• Part I: Generalization in Reinforcement Learning Connections to Supervised Learning We aim to understand natural sufficient conditions which capture the learnability in a general class of RL models.

- Part I: Generalization in Reinforcement Learning Connections to Supervised Learning
- Part II: Unifying sufficient conditions Various model assumptions for generalization in RL Simple Algorithm and Short Proof

Markov Decision Processes: A Framework for RL

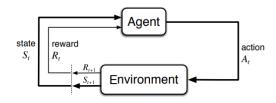


Markov Decision Processes: A Framework for RL

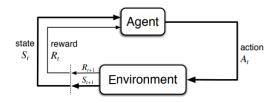


• A policy $\pi: S \to A$

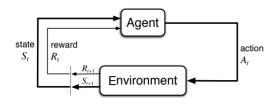
Markov Decision Processes: A Framework for RL



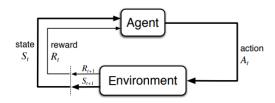
- A policy $\pi : S \to A$
 - Mario: Always go right!!



- A policy $\pi: \mathcal{S} \to \mathcal{A}$
 - Mario: Always go right!!
- Execute π to obtain a H-step trajectory $s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{H-1}, a_{H-1}, r_{H-1}$



- A policy $\pi: \mathcal{S} \to \mathcal{A}$
 - Mario: Always go right!!
- Execute π to obtain a H-step trajectory $s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{H-1}, a_{H-1}, r_{H-1}$
 - Chess: $H \approx 80$, Go: H = 150, Dota 2: $H \approx 20000$



- A policy $\pi: \mathcal{S} \to \mathcal{A}$
 - Mario: Always go right!!
- Execute π to obtain a H-step trajectory $s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{H-1}, a_{H-1}, r_{H-1}$
 - Chess: $H \approx 80$, Go: H = 150, Dota 2: $H \approx 20000$

Goal Learn a policy $\pi: S \to A$ which maximizes $\mathbb{E}_{\pi} \left[\sum_{t=0}^{H-1} r_t \right]$.

Part I: Generalization from Supervised Learning to Reinforcement Learning

To get ϵ -close to best in hypothesis class \mathcal{F} , we need # of samples that is:

• Finite Hypothesis class: $O(\log(|\mathcal{F}|)/\epsilon^2)$.

To get ϵ -close to best in hypothesis class \mathcal{F} , we need # of samples that is:

- Finite Hypothesis class: $O(\log(|\mathcal{F}|)/\epsilon^2)$.
- Infinite hypothesis classes: $O(\text{VCdim}(\mathcal{F})/\epsilon^2)$.

To get ϵ -close to best in hypothesis class \mathcal{F} , we need # of samples that is:

- Finite Hypothesis class: $O(\log(|\mathcal{F}|)/\epsilon^2)$.
- Infinite hypothesis classes: $O(\text{VCdim}(\mathcal{F})/\epsilon^2)$.
- Linear Regression in *d* dimensions: $O(d/\epsilon^2)$

To get ϵ -close to best in hypothesis class \mathcal{F} , we need # of samples that is:

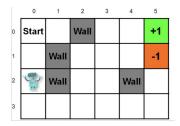
- Finite Hypothesis class: $O(\log(|\mathcal{F}|)/\epsilon^2)$.
- Infinite hypothesis classes: $O(\text{VCdim}(\mathcal{F})/\epsilon^2)$.
- Linear Regression in *d* dimensions: $O(d/\epsilon^2)$

The key idea in SL: uniform convergence / data-reuse. With a training set, we can simultaneously evaluate the loss of all hypotheses in our class!

Can we find an ϵ -opt policy with $poly(\mathcal{S}, \mathcal{A}, H, 1/\epsilon)$ samples?

	0	1	2	3	4	5
0	Start		Wall			+1
1		Wall				-1
2		Wall			Wall	
3						

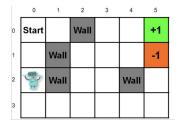
Can we find an ϵ -opt policy with $poly(\mathcal{S}, \mathcal{A}, H, 1/\epsilon)$ samples?



Theorem (Kearns & Singh '98; ...)

In the episodic setting, $poly(S, A, H, 1/\epsilon)$ samples suffice to find an ϵ -opt policy.

Can we find an ϵ -opt policy with $poly(\mathcal{S}, \mathcal{A}, H, 1/\epsilon)$ samples?



Theorem (Kearns & Singh '98; ...)

In the episodic setting, $poly(S, A, H, 1/\epsilon)$ samples suffice to find an ϵ -opt policy.

- Key Idea: optimism + dynamic programming
- Add bonus for states which are not explored enough.

Q1: Can we find an ϵ -opt policy with no |S| dependence?

Chess has $|S| \approx 10^{123}$ Dota2 has $S \subset \mathbb{R}^{16000}$!!

Chess has $|S| \approx 10^{123}$ Dota2 has $S \subset \mathbb{R}^{16000}$!!

• How can we reuse data to estimate the value of all policies in a policy class \mathcal{F} ?

Chess has $|S| \approx 10^{123}$ Dota2 has $S \subset \mathbb{R}^{16000}$!!

 How can we reuse data to estimate the value of all policies in a policy class *F*? Idea: Trajectory tree algorithm acts randomly for length *H* episodes and then uses importance sampling to evaluate every *f* ∈ *F*.

Theorem (Kearns, Mansour, & Ng '00)

To find an ϵ -best in class policy, the trajectory tree algo uses $O(|\mathcal{A}|^H \log(|\mathcal{F}|)/\epsilon^2)$.

Chess has $|S| \approx 10^{123}$ Dota2 has $S \subset \mathbb{R}^{16000}$!!

 How can we reuse data to estimate the value of all policies in a policy class *F*? Idea: Trajectory tree algorithm acts randomly for length *H* episodes and then uses importance sampling to evaluate every *f* ∈ *F*.

Theorem (Kearns, Mansour, & Ng '00)

To find an ϵ -best in class policy, the trajectory tree algo uses $O(|\mathcal{A}|^H \log(|\mathcal{F}|)/\epsilon^2)$.

• Can we avoid A^H dependence to find an ϵ -best-in-class policy?

Chess has $|S| \approx 10^{123}$ Dota2 has $S \subset \mathbb{R}^{16000}$!!

 How can we reuse data to estimate the value of all policies in a policy class *F*? Idea: Trajectory tree algorithm acts randomly for length *H* episodes and then uses importance sampling to evaluate every *f* ∈ *F*.

Theorem (Kearns, Mansour, & Ng '00)

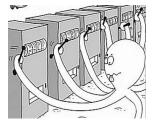
To find an ϵ -best in class policy, the trajectory tree algo uses $O(|\mathcal{A}|^H \log(|\mathcal{F}|)/\epsilon^2)$.

 Can we avoid A^H dependence to find an ε-best-in-class policy? Without further assumptions, NO!! Proof: Consider a binary tree with 2^H policies and a sparse reward at a leaf node. Q2: Can we find an ϵ -opt policy with no |S|, |A| dependence and $poly(H, 1/\epsilon, "complexity measure")?$ Q2: Can we find an ϵ -opt policy with no |S|, |A| dependence and $poly(H, 1/\epsilon$, "complexity measure")?

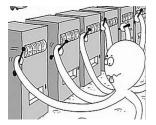
- With various stronger assumptions, YES!
 - Linear Bellman Completion: [Munos et al. '05, Zanette et al. '19]
 - Linear MDPs: [Wang & Yang '18]; [Jin et al.'19] (the transition matrix is low rank)
 - Generalized Linear Bellman Completion: [Wang et al. '2019]
 - FLAMBE / Feature Selection: [Agarwal et al. '20]
 - Linear Mixture MDPs: [Modi et al. '20, Ayoub et al. '20]
 - Block MDPs [Du et al. '19]
 - Factored MDPs [Sun et al. '19]
 - Kernelized Nonlinear Regulator [Kakade et al. '20]
 - Linear Quadratic Regulators (LQR): standard control theory model
 - And more...

Part II: What are sufficient conditions for efficient RL?

Is there a common theme to prior settings?

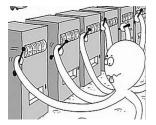


• [Assumption 1] One step RL (H = 1): single state: s_0 , large set of actions: $a \in \mathcal{A}$



- [Assumption 1] One step RL (H = 1): single state: s_0 , large set of actions: $a \in A$
- [Assumption 2] Linear reward: There exists unknown vector $w^{\star} \in \mathbb{R}^d$ and known feature map $\phi : S \times \mathcal{A} \to \mathbb{R}^d$

 $\mathbb{E}[r(s_0, a)] = \langle w^\star, \phi(s_0, a) \rangle$



- [Assumption 1] One step RL (H = 1): single state: s_0 , large set of actions: $a \in A$
- [Assumption 2] Linear reward: There exists unknown vector $w^{\star} \in \mathbb{R}^d$ and known feature map $\phi : S \times \mathcal{A} \to \mathbb{R}^d$

$$\mathbb{E}[r(s_0, a)] = \langle w^\star, \phi(s_0, a) \rangle$$

Polynomial sample complexity is possible here [Auer et al. 2002; Dani et al. 2008]

Warm Up: Important structural property

 Linear "value-based" Hypothesis class *F*: set of all (bounded) linear vectors *F* = {w ∈ ℝ^d}

Warm Up: Important structural property

 Linear "value-based" Hypothesis class F: set of all (bounded) linear vectors F = {w ∈ ℝ^d} Define for each hypothesis w ∈ F, Q_w(s₀, a) = ⟨w, φ(s₀, a)⟩,

• Linear "value-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{w \in \mathbb{R}^d\}$ Define for each hypothesis $w \in \mathcal{F}$, $Q_w(s_0, a) = \langle w, \phi(s_0, a) \rangle$, (greedy) value $V_w(s_0)$ and (greedy) policy $\pi_w(s_0)$

• Linear "value-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{w \in \mathbb{R}^d\}$ Define for each hypothesis $w \in \mathcal{F}$, $Q_w(s_0, a) = \langle w, \phi(s_0, a) \rangle$, (greedy) value $V_w(s_0)$ and (greedy) policy $\pi_w(s_0)$

An important structural property:

• Bilinear Regret: for all $w \in \mathcal{F}$, on policy difference between claimed reward $\mathbb{E}[Q_w]$ and true reward $\mathbb{E}[r]$ satisfies a bilinear form

 $\mathbb{E}_{\pi_w}[Q_w(s_0, a) - r]$

• Linear "value-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{w \in \mathbb{R}^d\}$ Define for each hypothesis $w \in \mathcal{F}$, $Q_w(s_0, a) = \langle w, \phi(s_0, a) \rangle$, (greedy) value $V_w(s_0)$ and (greedy) policy $\pi_w(s_0)$

An important structural property:

• Bilinear Regret: for all $w \in \mathcal{F}$, on policy difference between claimed reward $\mathbb{E}[Q_w]$ and true reward $\mathbb{E}[r]$ satisfies a bilinear form

$$\begin{split} & \mathbb{E}_{\pi_w}[Q_w(s_0, a) - r] \\ & = \mathbb{E}_{\pi_w}\Big[\left\langle w, \phi(s_0, a) \right\rangle - \left\langle w^\star, \phi(s_0, a) \right\rangle \Big] \end{split}$$

• Linear "value-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{w \in \mathbb{R}^d\}$ Define for each hypothesis $w \in \mathcal{F}$, $Q_w(s_0, a) = \langle w, \phi(s_0, a) \rangle$, (greedy) value $V_w(s_0)$ and (greedy) policy $\pi_w(s_0)$

An important structural property:

• Bilinear Regret: for all $w \in \mathcal{F}$, on policy difference between claimed reward $\mathbb{E}[Q_w]$ and true reward $\mathbb{E}[r]$ satisfies a bilinear form

$$\begin{split} & \mathbb{E}_{\pi_w}[Q_w(s_0, a) - r] \\ &= \mathbb{E}_{\pi_w}\left[\left\langle w, \phi(s_0, a) \right\rangle - \left\langle w^\star, \phi(s_0, a) \right\rangle \right] \\ &= \left\langle w - w^\star, \ \mathbb{E}_{\pi_w}[\phi(s_0, a)] \right\rangle \end{split}$$

• Linear "value-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{w \in \mathbb{R}^d\}$ Define for each hypothesis $w \in \mathcal{F}$, $Q_w(s_0, a) = \langle w, \phi(s_0, a) \rangle$, (greedy) value $V_w(s_0)$ and (greedy) policy $\pi_w(s_0)$

An important structural property:

• Bilinear Regret: for all $w \in \mathcal{F}$, on policy difference between claimed reward $\mathbb{E}[Q_w]$ and true reward $\mathbb{E}[r]$ satisfies a bilinear form

$$\begin{split} & \mathbb{E}_{\pi_w}[Q_w(s_0, a) - r] \\ &= \mathbb{E}_{\pi_w}\left[\left\langle w, \phi(s_0, a) \right\rangle - \left\langle w^\star, \phi(s_0, a) \right\rangle \right] \\ &= \left\langle w - w^\star, \ \mathbb{E}_{\pi_w}[\phi(s_0, a)] \right\rangle \end{split}$$

• Data reuse: There exists loss function $\ell(s, a, r, w') = Q_{w'}(s, a) - r$ such that the bilinear form for any hypothesis w' is estimable when playing π_w

• Linear "value-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{w \in \mathbb{R}^d\}$ Define for each hypothesis $w \in \mathcal{F}$, $Q_w(s_0, a) = \langle w, \phi(s_0, a) \rangle$, (greedy) value $V_w(s_0)$ and (greedy) policy $\pi_w(s_0)$

An important structural property:

• Bilinear Regret: for all $w \in \mathcal{F}$, on policy difference between claimed reward $\mathbb{E}[Q_w]$ and true reward $\mathbb{E}[r]$ satisfies a bilinear form

$$\begin{split} & \mathbb{E}_{\pi_w}[Q_w(s_0, a) - r] \\ &= \mathbb{E}_{\pi_w}\left[\left\langle w, \phi(s_0, a) \right\rangle - \left\langle w^\star, \phi(s_0, a) \right\rangle \right] \\ &= \left\langle w - w^\star, \ \mathbb{E}_{\pi_w}[\phi(s_0, a)] \right\rangle \end{split}$$

• Data reuse: There exists loss function $\ell(s, a, r, w') = Q_{w'}(s, a) - r$ such that the bilinear form for any hypothesis w' is estimable when playing π_w

$$\mathbb{E}_{\pi_w}[\ell(s_0, a, r, \boldsymbol{w'})] = \left\langle \boldsymbol{w'} - \boldsymbol{w^\star}, \ \mathbb{E}_{\pi_w}[\phi(s_0, a)] \right\rangle$$

Essentially, we can use data collected under π_w to estimate the bilinear form for w'

Generalization in RL

• Hypothesis class: $\{f\in \mathcal{F}\}$

with associated state action value $Q_f(s, a)$, (greedy) value $V_f(s)$ and (greedy) policy π_f

• can be model-based or value-based class.

BiLinear Classes: structural properties to enable generalization in RL

- Hypothesis class: $\{f \in \mathcal{F}\}\$ with associated state action value $Q_f(s, a)$, (greedy) value $V_f(s)$ and (greedy) policy π_f
 - can be model-based or value-based class.

Definition

A (\mathcal{F}, ℓ) forms an (implicit) Bilinear class if there exists $w_h : \mathcal{F} \to \mathbb{R}^d$ and $\Phi_h : \mathcal{F} \to \mathbb{R}^d$ for all timesteps $h \in [H]$:

- Hypothesis class: $\{f \in \mathcal{F}\}\$ with associated state action value $Q_f(s, a)$, (greedy) value $V_f(s)$ and (greedy) policy π_f
 - can be model-based or value-based class.

Definition

A (\mathcal{F}, ℓ) forms an (implicit) Bilinear class if there exists $w_h : \mathcal{F} \to \mathbb{R}^d$ and $\Phi_h : \mathcal{F} \to \mathbb{R}^d$ for all timesteps $h \in [H]$:

• Bilinear regret: on-policy difference between claimed reward and true reward satisfies a bilinear form:

 $\left|E_{\pi_f}\left[Q_f(s_h, a_h) - r(s_h, a_h) - V_f(s_{h+1})\right]\right| \le \left|\langle w_h(f) - w_h(f^\star), \Phi_h(f)\rangle\right|$

- Hypothesis class: $\{f \in \mathcal{F}\}\$ with associated state action value $Q_f(s, a)$, (greedy) value $V_f(s)$ and (greedy) policy π_f
 - can be model-based or value-based class.

Definition

A (\mathcal{F}, ℓ) forms an (implicit) Bilinear class if there exists $w_h : \mathcal{F} \to \mathbb{R}^d$ and $\Phi_h : \mathcal{F} \to \mathbb{R}^d$ for all timesteps $h \in [H]$:

• Bilinear regret: on-policy difference between claimed reward and true reward satisfies a bilinear form:

$$\left| E_{\pi_f} \left[Q_f(s_h, a_h) - r(s_h, a_h) - V_f(s_{h+1}) \right] \right| \le \left| \langle w_h(f) - w_h(f^*), \Phi_h(f) \rangle \right|$$

• Data reuse: There exists loss function $\ell_f(s_h, a_h, r_h, s_{h+1}, g)$ such that the bilinear form for any hypothesis g is estimable when playing π_f

$$\left|E_{\pi_f}\left[\ell_f(r_h, s_h, a_h, s_{h+1}, g)\right]\right| = \left|\langle w_h(g) - w_h(f^\star), \Phi_h(f)\rangle\right|$$

- Linear Bellman Completion: [Munos et al. '05, Zanette et al. '19]
 - Linear MDPs: [Wang & Yang '18]; [Jin et al.'19] (the transition matrix is low rank)
 - Generalized Linear Bellman Completion: [Wang et al. '2019]
- FLAMBE / Feature Selection: [Agarwal et al. '20]
- Linear Mixture MDPs: [Modi et al. '20, Ayoub et al. '20]
- Block MDPs [Du et al. '19]
- Factored MDPs [Sun et al. '19]
- Kernelized Nonlinear Regulator [Kakade et al. '20]
 - Linear Quadratic Regulators (LQR): standard control theory model
- And more. . .
- (almost) all "named" models (with provable generalization) are bilinear classes

- Linear Bellman Completion: [Munos et al. '05, Zanette et al. '19]
 - Linear MDPs: [Wang & Yang '18]; [Jin et al.'19] (the transition matrix is low rank)
 - Generalized Linear Bellman Completion: [Wang et al. '2019]
- FLAMBE / Feature Selection: [Agarwal et al. '20]
- Linear Mixture MDPs: [Modi et al. '20, Ayoub et al. '20]
- Block MDPs [Du et al. '19]
- Factored MDPs [Sun et al. '19]
- Kernelized Nonlinear Regulator [Kakade et al. '20]
 - Linear Quadratic Regulators (LQR): standard control theory model
- And more. . .
- (almost) all "named" models (with provable generalization) are bilinear classes two exceptions: a) deterministic linear Q* [Wen & Van Roy, '13; Du, Lee, M., Wang, '20]
 b) Q* state-action aggregation [Dong et al. '20]

- Linear Bellman Completion: [Munos et al. '05, Zanette et al. '19]
 - Linear MDPs: [Wang & Yang '18]; [Jin et al.'19] (the transition matrix is low rank)
 - Generalized Linear Bellman Completion: [Wang et al. '2019]
- FLAMBE / Feature Selection: [Agarwal et al. '20]
- Linear Mixture MDPs: [Modi et al. '20, Ayoub et al. '20]
- Block MDPs [Du et al. '19]
- Factored MDPs [Sun et al. '19]
- Kernelized Nonlinear Regulator [Kakade et al. '20]
 - Linear Quadratic Regulators (LQR): standard control theory model
- And more. . .
- (almost) all "named" models (with provable generalization) are bilinear classes two exceptions: a) deterministic linear Q* [Wen & Van Roy, '13; Du, Lee, M., Wang, '20]
 b) Q* state-action aggregation [Dong et al. '20]
- Bilinear classes generalize the: Bellman rank [Jiang et al. '17]; Witness rank [Wen et al. '19]

- Linear Bellman Completion: [Munos et al. '05, Zanette et al. '19]
 - Linear MDPs: [Wang & Yang '18]; [Jin et al.'19] (the transition matrix is low rank)
 - Generalized Linear Bellman Completion: [Wang et al. '2019]
- FLAMBE / Feature Selection: [Agarwal et al. '20]
- Linear Mixture MDPs: [Modi et al. '20, Ayoub et al. '20]
- Block MDPs [Du et al. '19]
- Factored MDPs [Sun et al. '19]
- Kernelized Nonlinear Regulator [Kakade et al. '20]
 - Linear Quadratic Regulators (LQR): standard control theory model
- And more...
- (almost) all "named" models (with provable generalization) are bilinear classes two exceptions: a) deterministic linear Q* [Wen & Van Roy, '13; Du, Lee, M., Wang, '20]
 b) Q* state-action aggregation [Dong et al. '20]
- Bilinear classes generalize the: Bellman rank [Jiang et al. '17]; Witness rank [Wen et al. '19]
- The framework easily leads to new models (see paper).

The Algorithm: BiLin-UCB

Algorithm 1: BiLin-UCB

- 1 Input number of iterations T, estimator function $\ell,$ batch size m, confidence radius R
- 2 Initialize discrepancy function $\sigma: \mathcal{F} \to \mathbb{R}$ as $\sigma^2(\cdot) = 0$
- 3 for iteration t = 0, 1, ..., T 1 do

Algorithm 1: BiLin-UCB

- 1 Input number of iterations T, estimator function $\ell,$ batch size m, confidence radius R
- 2 Initialize discrepancy function $\sigma: \mathcal{F} \to \mathbb{R}$ as $\sigma^2(\cdot) = 0$
- 3 for iteration $t = 0, 1, \ldots, T-1$ do

```
4 Find the optimistic f_t \in \mathcal{F}:
```

```
f_t := \mathop{\arg\max}_{f} V_f(s_0) \quad \text{subject to } \sigma^2(f) \leq R
```

Algorithm 1: BiLin-UCB

- 1 Input number of iterations T, estimator function ℓ , batch size m, confidence radius R
- 2 Initialize discrepancy function $\sigma: \mathcal{F} \to \mathbb{R}$ as $\sigma^2(\cdot) = 0$
- 3 for iteration $t = 0, 1, \ldots, T 1$ do
- 4 Find the optimistic $f_t \in \mathcal{F}$:

$$f_t := rg\max_f V_f(s_0)$$
 subject to $\sigma^2(f) \le R$

Sample *m* trajectories using π_{f_t} and create a batch dataset of size *mH*:

 $S = \{(r_h, s_h, a_h, s_{h+1}) \in \text{trajectories}\}$

5

Algorithm 1: BiLin-UCB

- 1 Input number of iterations T, estimator function ℓ , batch size m, confidence radius R
- 2 Initialize discrepancy function $\sigma: \mathcal{F} \to \mathbb{R}$ as $\sigma^2(\cdot) = 0$
- 3 for iteration $t = 0, 1, \ldots, T-1$ do
- 4 Find the optimistic $f_t \in \mathcal{F}$:

$$f_t := rg\max_f V_f(s_0)$$
 subject to $\sigma^2(f) \le R$

5 Sample m trajectories using π_{f_t} and create a batch dataset of size mH:

 $S = \{(r_h, s_h, a_h, s_{h+1}) \in \text{trajectories}\}$

6 Update the discrepancy function $\sigma^2(\cdot)$

$$\sigma^2(\cdot) \leftarrow \sigma^2(\cdot) + \left(\frac{1}{|S|} \sum_{o \in S} \ell(o, \cdot)\right)^2$$

7 return: the best policy π_f found

Assume (\mathcal{F}, ℓ) is a bilinear class with $\Phi_h(f) \in \mathbb{R}^d$, bounded ℓ and the class is realizable, i.e. $Q^* \in \mathcal{F}$. Using $\frac{d^2}{c^2} \cdot \operatorname{poly}(H) \cdot \log(|\mathcal{F}|) \cdot \log(1/\delta)$ trajectories, the BiLin-UCB algorithm returns an ϵ -opt policy (with prob. $1 - \delta$).

Assume (\mathcal{F}, ℓ) is a bilinear class with $\Phi_h(f) \in \mathbb{R}^d$, bounded ℓ and the class is realizable, i.e. $Q^* \in \mathcal{F}$. Using $\frac{d^2}{\epsilon^2} \cdot poly(H) \cdot \log(|\mathcal{F}|) \cdot \log(1/\delta)$ trajectories, the BiLin-UCB algorithm returns an ϵ -opt policy (with prob. $1 - \delta$).

• The proof is "elementary" using the elliptical potential function. [Dani et al., '08]

Assume (\mathcal{F}, ℓ) is a bilinear class with $\Phi_h(f) \in \mathbb{R}^d$, bounded ℓ and the class is realizable, i.e. $Q^* \in \mathcal{F}$. Using $\frac{d^2}{\epsilon^2} \cdot \operatorname{poly}(H) \cdot \log(|\mathcal{F}|) \cdot \log(1/\delta)$ trajectories, the BiLin-UCB algorithm returns an ϵ -opt policy (with prob. $1 - \delta$).

- The proof is "elementary" using the elliptical potential function. [Dani et al., '08]
- Extends to infinite dimensional problems using max info gain γ_T [Auer et al., '02; Srinivas et al., '10; Abbasi-Yadkori et al., '11]

• The proof follows from this lemma about existence of high quality policy.

Lemma (Existence of high quality policy)

Suppose we run the algorithm for $T \approx d$ iterations. Then, there exists $t \in [T]$ such that the following is true for hypothesis f_t :

$$V^{\star} - V^{\pi_{f_t}}(s_0) \le 2H\sqrt{d} \cdot \underbrace{H\sqrt{\frac{\log(|\mathcal{F}|)}{m}}}_{SL \text{ generalization error of } \ell}$$

Lemma (Bilinear Regret Lemma)

The following holds for all $t \in [T]$ w.h.p.:

$$V^{\star} - V^{\pi_{f_t}}(s_0) \le \sum_{h=0}^{H-1} |\langle w_h(f_t) - w_h(f^{\star}), \Phi_h(f_t) \rangle|$$
.

Lemma (Bilinear Regret Lemma)

The following holds for all $t \in [T]$ w.h.p.:

$$V^{\star} - V^{\pi_{f_t}}(s_0) \le \sum_{h=0}^{H-1} |\langle w_h(f_t) - w_h(f^{\star}), \Phi_h(f_t) \rangle|$$
.

Proof:

 $V^{\star}(s_0) - V^{\pi_{f_t}}(s_0)$

Lemma (Bilinear Regret Lemma)

The following holds for all $t \in [T]$ w.h.p.:

$$V^{\star} - V^{\pi_{f_t}}(s_0) \le \sum_{h=0}^{H-1} |\langle w_h(f_t) - w_h(f^{\star}), \Phi_h(f_t) \rangle| .$$

Proof:

$$V^{\star}(s_{0}) - V^{\pi_{f_{t}}}(s_{0}) \\ \leq V_{f_{t}}(s_{0}) - V^{\pi_{f_{t}}}(s_{0})$$

(optimism)

Lemma (Bilinear Regret Lemma)

The following holds for all $t \in [T]$ w.h.p.:

$$V^{\star} - V^{\pi_{f_t}}(s_0) \le \sum_{h=0}^{H-1} |\langle w_h(f_t) - w_h(f^{\star}), \Phi_h(f_t) \rangle|$$
.

Proof:

$$\begin{split} V^{\star}(s_{0}) &- V^{\pi_{f_{t}}}(s_{0}) \\ &\leq V_{f_{t}}(s_{0}) - V^{\pi_{f_{t}}}(s_{0}) \\ &= \sum_{h=0}^{H-1} \mathbb{E}_{a_{0:h} \sim \pi_{f_{t}}} \left[Q_{f_{t}}(s_{h}, a_{h}) - r(s_{h}, a_{h}) - Q_{f_{t}}(s_{h+1}, a_{h+1}) \right] \\ \end{split}$$
(telescoping sum)

Lemma (Bilinear Regret Lemma)

The following holds for all $t \in [T]$ w.h.p.:

$$V^{\star} - V^{\pi_{f_t}}(s_0) \le \sum_{h=0}^{H-1} |\langle w_h(f_t) - w_h(f^{\star}), \Phi_h(f_t) \rangle|$$
.

Proof:

$$\begin{split} V^{\star}(s_{0}) &- V^{\pi_{f_{t}}}(s_{0}) \\ &\leq V_{f_{t}}(s_{0}) - V^{\pi_{f_{t}}}(s_{0}) \\ &= \sum_{h=0}^{H-1} \mathbb{E}_{a_{0:h} \sim \pi_{f_{t}}} \left[Q_{f_{t}}(s_{h}, a_{h}) - r(s_{h}, a_{h}) - Q_{f_{t}}(s_{h+1}, a_{h+1}) \right] \\ &= \sum_{h=0}^{H-1} |\langle w_{h}(f_{t}) - w_{h}(f^{\star}), \Phi_{h}(f_{t}) \rangle| \\ \end{split}$$
(bilinear regret assumption)

• Bilinear regret assumption and Optimism give an upper bound on sub-optimality for all iterations *t*.

$$V^{\star} - V^{\pi_{f_t}}(s_0) \le \sum_{h=0}^{H-1} |\langle w_h(f_t) - w_h(f^{\star}), \Phi_h(f_t) \rangle|$$

• Bilinear regret assumption and Optimism give an upper bound on sub-optimality for all iterations *t*.

$$V^{\star} - V^{\pi_{f_t}}(s_0) \le \sum_{h=0}^{H-1} |\langle w_h(f_t) - w_h(f^{\star}), \Phi_h(f_t) \rangle|$$
.

• Our goal then is to show existence of iteration $t \in [T]$ such that

$$\sum_{h=0}^{H-1} |\langle w_h(f_t) - w_h(f^\star), \Phi_h(f_t)
angle| \hspace{0.5cm}$$
 is small

• Bilinear regret assumption and Optimism give an upper bound on sub-optimality for all iterations *t*.

$$V^{\star} - V^{\pi_{f_t}}(s_0) \le \sum_{h=0}^{H-1} |\langle w_h(f_t) - w_h(f^{\star}), \Phi_h(f_t) \rangle|$$
.

• Our goal then is to show existence of iteration $t \in [T]$ such that

$$\sum_{h=0}^{H-1} |\langle w_h(f_t) - w_h(f^\star), \Phi_h(f_t)
angle| \hspace{0.5cm}$$
 is small

• To that end, we will show existence of iteration $t \in [T]$ such that for $\Sigma_{0;h} = \lambda I$ and $\Sigma_{t;h} = \Sigma_{0;h} + \sum_{i=0}^{t-1} \Phi_h(f_i) \Phi_h(f_i)^\top$, the following is true

$$\|w_h(f_t) - w_h(f^\star)\|_{\Sigma_{t;h}} \quad \|\Phi_h(f_t)\|_{\Sigma_{t;h}^{-1}} \quad \text{is small for all } h \in [H]$$

Proof of main lemma

• To that end, we will show existence of iteration $t \in [T]$ such that for $\Sigma_{0;h} = \lambda I$ and $\Sigma_{t;h} = \Sigma_{0;h} + \sum_{i=0}^{t-1} \Phi_h(f_i) \Phi_h(f_i)^\top$, the following is true

 $\|w_h(f_t) - w_h(f^\star)\|_{\Sigma_{t;h}} \quad \|\Phi_h(f_t)\|_{\Sigma_{t;h}^{-1}} \quad \text{is small for all } h \in [H]$

Proof of main lemma

• To that end, we will show existence of iteration $t \in [T]$ such that for $\Sigma_{0;h} = \lambda I$ and $\Sigma_{t;h} = \Sigma_{0;h} + \sum_{i=0}^{t-1} \Phi_h(f_i) \Phi_h(f_i)^\top$, the following is true

 $\|w_h(f_t) - w_h(f^\star)\|_{\Sigma_{t;h}} \quad \|\Phi_h(f_t)\|_{\Sigma_{t;h}^{-1}} \quad \text{is small for all } h \in [H]$

• From our optimization constraint, we get that for all time t (we can set R small because of uniform convergence and Data reuse assumption)

$$\|w_h(f_t) - w_h(f^{\star})\|_{\Sigma_{t;h}} \le R = 2\sqrt{d} \cdot \underbrace{H\sqrt{\frac{\log(|\mathcal{F}|)}{m}}}_{\text{SL generalization error}} \quad \text{for all } h \in [H]$$

Proof of main lemma

• To that end, we will show existence of iteration $t \in [T]$ such that for $\Sigma_{0;h} = \lambda I$ and $\Sigma_{t;h} = \Sigma_{0;h} + \sum_{i=0}^{t-1} \Phi_h(f_i) \Phi_h(f_i)^{\top}$, the following is true

 $\|w_h(f_t) - w_h(f^\star)\|_{\Sigma_{t;h}} \quad \|\Phi_h(f_t)\|_{\Sigma_{t;h}^{-1}} \quad \text{is small for all } h \in [H]$

• From our optimization constraint, we get that for all time t (we can set R small because of uniform convergence and Data reuse assumption)

$$\|w_h(f_t) - w_h(f^*)\|_{\Sigma_{t;h}} \le R = 2\sqrt{d} \cdot \underbrace{H\sqrt{\frac{\log(|\mathcal{F}|)}{m}}}_{\text{SL generalization error}} \quad \text{for all } h \in [H]$$

• From Elliptical Potential Lemma, there exists $t \in [T]$ (for $T \approx d$) such that

$$\|\Phi_h(f_t)\|_{\Sigma_{t,h}^{-1}}^2 = O(1) \text{ for all } h \in [H]$$

Note that for infinite dimensional spaces, we can use max info gain instead.

Lemma (Elliptical Potential Lemma; Dani et al., '08)

Consider any sequence of vectors $\{x_0, \ldots, x_{T-1}\}$ where $x_i \in \mathcal{V}$ for some Hilbert space \mathcal{V} . Let $\lambda \in \mathbb{R}^+$. Denote $\Sigma_0 = \lambda I$ and $\Sigma_t = \Sigma_0 + \sum_{i=0}^{t-1} x_i x_i^\top$. We have that:

$$\min_{\in [T]} \ln \left(1 + \|x_i\|_{\Sigma_i^{-1}}^2 \right) \le \frac{1}{T} \ln \frac{\det (\Sigma_T)}{\det(\lambda I)}.$$

Lemma (Elliptical Potential Lemma; Dani et al., '08)

Consider any sequence of vectors $\{x_0, \ldots, x_{T-1}\}$ where $x_i \in \mathcal{V}$ for some Hilbert space \mathcal{V} . Let $\lambda \in \mathbb{R}^+$. Denote $\Sigma_0 = \lambda I$ and $\Sigma_t = \Sigma_0 + \sum_{i=0}^{t-1} x_i x_i^\top$. We have that:

$$\min_{\in [T]} \ln \left(1 + \left\| x_i \right\|_{\Sigma_i^{-1}}^2 \right) \le \frac{1}{T} \ln \frac{\det \left(\Sigma_T \right)}{\det(\lambda I)}.$$

• Proof: By definition of Σ_t and matrix determinant lemma, we have:

$$\ln \det(\Sigma_{t+1}) = \ln \det(\Sigma_t) + \ln \left(1 + \|x_t\|_{\Sigma_t^{-1}}^2 \right).$$

Special case II: Linear Bellman complete classes [Munos, 2005]

• [Assumption 1] Linear Q^* : There exists unknown $w^* \in \mathbb{R}^d$ and known features $\phi: S \times \mathcal{A} \to \mathbb{R}^d$ such that

 $Q^{\star}(s,a) = \langle w^{\star}, \phi(s,a) \rangle$

• [Assumption 1] Linear Q^* : There exists unknown $w^* \in \mathbb{R}^d$ and known features $\phi: \mathcal{S} \times \mathcal{A} \to \mathbb{R}^d$ such that

$$Q^{\star}(s,a) = \langle w^{\star}, \phi(s,a) \rangle$$

• [Assumption 2] Completeness: Let \mathcal{F} be the linear "value-based" hypothesis class. For every $w \in \mathcal{F}$, there exists $\mathcal{T}(w) \in \mathcal{F}$ such that

$$\langle T(w), \phi(s, a) \rangle = r(s, a) + \mathbb{E}_{s' \sim P(s, a)}[\max_{a'} Q_w(s', a')]$$

• [Assumption 1] Linear Q^* : There exists unknown $w^* \in \mathbb{R}^d$ and known features $\phi: \mathcal{S} \times \mathcal{A} \to \mathbb{R}^d$ such that

$$Q^{\star}(s,a) = \langle w^{\star}, \phi(s,a) \rangle$$

• [Assumption 2] Completeness: Let \mathcal{F} be the linear "value-based" hypothesis class. For every $w \in \mathcal{F}$, there exists $\mathcal{T}(w) \in \mathcal{F}$ such that

$$\langle T(w), \phi(s, a) \rangle = r(s, a) + \mathbb{E}_{s' \sim P(s, a)}[\max_{a'} Q_w(s', a')]$$

Polynomial sample complexity is possible here [Zanette et al. 2020])

Analogous structural property holds here:

• Bilinear Regret: on policy difference between claimed reward $\mathbb{E}[Q_w - V_w]$ and true reward $\mathbb{E}[r]$ satisfies a bilinear form

 $\mathbb{E}_{\pi_w}[Q_w(s_h, a_h) - r(s_h, a_h) - V_w(s_{h+1})]$

Analogous structural property holds here:

$$\mathbb{E}_{\pi_w}[Q_w(s_h, a_h) - r(s_h, a_h) - V_w(s_{h+1})] \\= \mathbb{E}_{\pi_w}\left[\left\langle w, \phi(s, a) \right\rangle - \left\langle T(w), \phi(s, a) \right\rangle \right]$$

Analogous structural property holds here:

$$\begin{split} & \mathbb{E}_{\pi_w}[Q_w(s_h, a_h) - r(s_h, a_h) - V_w(s_{h+1})] \\ & = \mathbb{E}_{\pi_w}\left[\left\langle w, \phi(s, a) \right\rangle - \left\langle T(w), \phi(s, a) \right\rangle \right] \\ & = \left\langle w - T(w), \mathbb{E}_{\pi_w}[\phi(s, a)] \right\rangle \end{split}$$

Analogous structural property holds here:

$$\begin{split} & \mathbb{E}_{\pi_w}[Q_w(s_h, a_h) - r(s_h, a_h) - V_w(s_{h+1})] \\ &= \mathbb{E}_{\pi_w}\left[\left\langle w, \phi(s, a) \right\rangle - \left\langle T(w), \phi(s, a) \right\rangle \right] \\ &= \left\langle w - T(w), \mathbb{E}_{\pi_w}[\phi(s, a)] \right\rangle \\ &= \left\langle w - T(w) - (w^* - T(w^*)), \ \mathbb{E}_{\pi_w}[\phi(s, a)] \right\rangle \end{split}$$

Analogous structural property holds here:

• Bilinear Regret: on policy difference between claimed reward $\mathbb{E}[Q_w - V_w]$ and true reward $\mathbb{E}[r]$ satisfies a bilinear form

$$\begin{split} & \mathbb{E}_{\pi_w}[Q_w(s_h, a_h) - r(s_h, a_h) - V_w(s_{h+1})] \\ &= \mathbb{E}_{\pi_w}\left[\left\langle w, \phi(s, a) \right\rangle - \left\langle T(w), \phi(s, a) \right\rangle \right] \\ &= \left\langle w - T(w), \mathbb{E}_{\pi_w}[\phi(s, a)] \right\rangle \\ &= \left\langle w - T(w) - (w^\star - T(w^\star)), \ \mathbb{E}_{\pi_w}[\phi(s, a)] \right\rangle \end{split}$$

• Data reuse: There exists loss function $\ell(\cdot,w')$ such that the bilinear form for any hypothesis w' is estimable when playing π_w

$$\mathbb{E}_{\pi_w} \left[\ell(s_h, a_h, r_h, s_{h+1}, \boldsymbol{w}') \right]$$

= $\left\langle \boldsymbol{w}' - T(\boldsymbol{w}') - (\boldsymbol{w}^* - T(\boldsymbol{w}^*)), \mathbb{E}_{\pi_w} [\phi(s, a)] \right\rangle$

Analogous structural property holds here:

• Bilinear Regret: on policy difference between claimed reward $\mathbb{E}[Q_w - V_w]$ and true reward $\mathbb{E}[r]$ satisfies a bilinear form

$$\begin{split} & \mathbb{E}_{\pi_w}[Q_w(s_h, a_h) - r(s_h, a_h) - V_w(s_{h+1})] \\ &= \mathbb{E}_{\pi_w}\left[\left\langle w, \phi(s, a) \right\rangle - \left\langle T(w), \phi(s, a) \right\rangle \right] \\ &= \left\langle w - T(w), \mathbb{E}_{\pi_w}[\phi(s, a)] \right\rangle \\ &= \left\langle w - T(w) - (w^\star - T(w^\star)), \ \mathbb{E}_{\pi_w}[\phi(s, a)] \right\rangle \end{split}$$

• Data reuse: There exists loss function $\ell(\cdot,w')$ such that the bilinear form for any hypothesis w' is estimable when playing π_w

$$\mathbb{E}_{\pi_w} \left[\ell(s_h, a_h, r_h, s_{h+1}, \boldsymbol{w}') \right]$$

= $\left\langle \boldsymbol{w}' - T(\boldsymbol{w}') - (\boldsymbol{w}^* - T(\boldsymbol{w}^*)), \mathbb{E}_{\pi_w} [\phi(s, a)] \right\rangle$

Here the loss function is

$$\ell(s_h, a_h, r_h, s_{h+1}, w') = Q_{w'}(s_h, a_h) - r_h - V_{w'}(s_{h+1})$$

Linear Function Approximation

Basic idea: approximate the Q(s, a) values with linear basis functions $\phi_1(s, a), \ldots, \phi_d(s, a)$ (where $d \ll \#states, \#actions$).

• [Assumption 1] Linear Q^* : There exists unknown $w^* \in \mathbb{R}^d$ and known features $\phi: S \times \mathcal{A} \to \mathbb{R}^d$ such that

 $Q^{\star}(s,a) = \langle w^{\star}, \ \phi(s,a) \rangle$

Linear Function Approximation

Basic idea: approximate the Q(s, a) values with linear basis functions $\phi_1(s, a), \ldots, \phi_d(s, a)$ (where $d \ll \#states, \#actions$).

• [Assumption 1] Linear Q^* : There exists unknown $w^* \in \mathbb{R}^d$ and known features $\phi: S \times \mathcal{A} \to \mathbb{R}^d$ such that

 $Q^{\star}(s,a) = \langle w^{\star}, \ \phi(s,a) \rangle$

• C. Shannon. Programming a digital computer for playing chess. Philosophical Magazine, '50.

Linear Function Approximation

Basic idea: approximate the Q(s, a) values with linear basis functions $\phi_1(s, a), \ldots, \phi_d(s, a)$ (where $d \ll \#states, \#actions$).

• [Assumption 1] Linear Q^* : There exists unknown $w^* \in \mathbb{R}^d$ and known features $\phi: S \times \mathcal{A} \to \mathbb{R}^d$ such that

 $Q^{\star}(s,a) = \langle w^{\star}, \ \phi(s,a) \rangle$

- C. Shannon. Programming a digital computer for playing chess. Philosophical Magazine, '50.
- Lots of work on this approach, e.g. TD-Gammon [Tesauro, '95], Atari [Mnih+ '13].

There exists a deterministic MDP and ϕ satisfying Assumption 1 s.t. any online RL algorithm requires $\Omega(\min(2^d, 2^H))$ samples to output optimal policy upto constant additive error.

There exists a deterministic MDP and ϕ satisfying Assumption 1 s.t. any online RL algorithm requires $\Omega(\min(2^d, 2^H))$ samples to output optimal policy upto constant additive error.

• [Assumption 2] Large Suboptimality Gap: There is a Δ_{\min} such that for all $a \neq \pi^*(s)$

$$\inf_{s,a\neq\pi^{\star}(s)}V_{h}^{\star}(s)-Q_{h}^{\star}(s,a)=\Delta_{\min}>0$$

There exists a deterministic MDP and ϕ satisfying Assumption 1 s.t. any online RL algorithm requires $\Omega(\min(2^d, 2^H))$ samples to output optimal policy upto constant additive error.

• [Assumption 2] Large Suboptimality Gap: There is a Δ_{\min} such that for all $a \neq \pi^*(s)$

$$\inf_{s,a\neq\pi^{\star}(s)}V_{h}^{\star}(s)-Q_{h}^{\star}(s,a)=\Delta_{\min}>0$$

• Efficient algorithms exists for deterministic MDPs, stochastic rewards and Assumption 1, 2 [Wen & Van Roy, '13; Du, Lee, M., Wang, '20]

There exists a deterministic MDP and ϕ satisfying Assumption 1 s.t. any online RL algorithm requires $\Omega(\min(2^d, 2^H))$ samples to output optimal policy upto constant additive error.

• [Assumption 2] Large Suboptimality Gap: There is a Δ_{\min} such that for all $a \neq \pi^{\star}(s)$

$$\inf_{s,a\neq\pi^{\star}(s)}V_{h}^{\star}(s)-Q_{h}^{\star}(s,a)=\Delta_{\min}>0$$

• Efficient algorithms exists for deterministic MDPs, stochastic rewards and Assumption 1, 2 [Wen & Van Roy, '13; Du, Lee, M., Wang, '20]

Theorem (Wang, Wang, Kakade '21)

There exists a stochastic MDP and ϕ satisfying Assumption 1, 2 s.t. any online RL algorithm requires $\Omega(\min(2^d, 2^H))$ samples to output optimal policy upto constant additive error.

• [Assumption 1] Linear Q^{\star} and V^{\star} : There exists unknown $w^{\star} \in \mathbb{R}^d$ and known features $\phi: S \times \mathcal{A} \to \mathbb{R}^d, \psi: S \to \mathbb{R}^d$ such that

 $Q^{\star}(s,a) = \langle w^{\star}, \ \phi(s,a) \rangle \quad \text{and} \quad V^{\star}(s) = \langle w^{\star}, \ \psi(s) \rangle$

• [Assumption 1] Linear Q^{\star} and V^{\star} : There exists unknown $w^{\star} \in \mathbb{R}^d$ and known features $\phi: S \times \mathcal{A} \to \mathbb{R}^d, \psi: S \to \mathbb{R}^d$ such that

 $Q^{\star}(s,a) = \langle w^{\star}, \ \phi(s,a) \rangle \quad \text{and} \quad V^{\star}(s) = \langle w^{\star}, \ \psi(s) \rangle$

Can we get polynomial sample complexity by also assuming linear V^* ?

• Linear "value-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{w \in \mathbb{R}^d\}$

 Linear "value-based" Hypothesis class F: set of all (bounded) linear vectors F = {w ∈ ℝ^d} Define for each hypothesis w ∈ F, Q_w(s, a) = ⟨w, φ(s, a)⟩, V_w(s) = ⟨w, ψ(s)⟩,

• Linear "value-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{w \in \mathbb{R}^d\}$ Define for each hypothesis $w \in \mathcal{F}$, $Q_w(s, a) = \langle w, \phi(s, a) \rangle$, $V_w(s) = \langle w, \psi(s) \rangle$, $\pi_w(s)$ as the optimal functions for value function $Q_w(s, a)$

• Linear "value-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{w \in \mathbb{R}^d\}$ Define for each hypothesis $w \in \mathcal{F}$, $Q_w(s, a) = \langle w, \phi(s, a) \rangle$, $V_w(s) = \langle w, \psi(s) \rangle$, $\pi_w(s)$ as the optimal functions for value function $Q_w(s, a)$

Analogous structural property holds here:

• Bilinear Regret: on policy difference between claimed reward $\mathbb{E}[Q_w - V_w]$ and true reward $\mathbb{E}[r]$ satisfies a bilinear form

 $\mathbb{E}_{\pi_w}[Q_w(s_h, a_h) - r(s_h, a_h) - V_w(s_{h+1})]$

• Linear "value-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{w \in \mathbb{R}^d\}$ Define for each hypothesis $w \in \mathcal{F}$, $Q_w(s, a) = \langle w, \phi(s, a) \rangle$, $V_w(s) = \langle w, \psi(s) \rangle$, $\pi_w(s)$ as the optimal functions for value function $Q_w(s, a)$

Analogous structural property holds here:

$$\begin{split} & \mathbb{E}_{\pi_w}[Q_w(s_h, a_h) - r(s_h, a_h) - V_w(s_{h+1})] \\ & = \left\langle w - w^\star, \quad \mathbb{E}_{\pi_w}\left[\phi(s_h, a_h), -\psi(s_{h+1})\right] \right\rangle \end{split}$$

• Linear "value-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{w \in \mathbb{R}^d\}$ Define for each hypothesis $w \in \mathcal{F}$, $Q_w(s, a) = \langle w, \phi(s, a) \rangle$, $V_w(s) = \langle w, \psi(s) \rangle$, $\pi_w(s)$ as the optimal functions for value function $Q_w(s, a)$

Analogous structural property holds here:

• Bilinear Regret: on policy difference between claimed reward $\mathbb{E}[Q_w - V_w]$ and true reward $\mathbb{E}[r]$ satisfies a bilinear form

$$\begin{split} & \mathbb{E}_{\pi_w}[Q_w(s_h, a_h) - r(s_h, a_h) - V_w(s_{h+1})] \\ & = \left\langle w - w^\star, \quad \mathbb{E}_{\pi_w}\left[\phi(s_h, a_h), -\psi(s_{h+1})\right] \right\rangle \end{split}$$

• Data reuse: There exists loss function $\ell_w(\cdot)$ such that the bilinear form for any hypothesis w' is estimable when playing π_w

$$\mathbb{E}_{\pi_w} [\ell_w(s_h, a_h, r_h, s_{h+1}, w')]$$

= $\left\langle \boldsymbol{w'} - \boldsymbol{w^*}, \mathbb{E}_{\pi_w} \left[\phi(s_h, a_h), -\psi(s_{h+1}) \right] \right\rangle$

• Linear "value-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{w \in \mathbb{R}^d\}$ Define for each hypothesis $w \in \mathcal{F}$, $Q_w(s, a) = \langle w, \phi(s, a) \rangle$, $V_w(s) = \langle w, \psi(s) \rangle$, $\pi_w(s)$ as the optimal functions for value function $Q_w(s, a)$

Analogous structural property holds here:

• Bilinear Regret: on policy difference between claimed reward $\mathbb{E}[Q_w - V_w]$ and true reward $\mathbb{E}[r]$ satisfies a bilinear form

$$\begin{split} & \mathbb{E}_{\pi_w}[Q_w(s_h, a_h) - r(s_h, a_h) - V_w(s_{h+1})] \\ & = \left\langle w - w^\star, \quad \mathbb{E}_{\pi_w}\left[\phi(s_h, a_h), -\psi(s_{h+1})\right] \right\rangle \end{split}$$

• Data reuse: There exists loss function $\ell_w(\cdot)$ such that the bilinear form for any hypothesis w' is estimable when playing π_w

$$\mathbb{E}_{\pi_w} [\ell_w(s_h, a_h, r_h, s_{h+1}, w')]$$

= $\left\langle \boldsymbol{w'} - \boldsymbol{w^*}, \mathbb{E}_{\pi_w} \left[\phi(s_h, a_h), -\psi(s_{h+1}) \right] \right\rangle$

Here the loss function is

$$\ell_w(s_h, a_h, r_h, s_{h+1}, w') = Q_{w'}(s_h, a_h) - V_{w'}(s_{h+1}) - r_h$$

• [Assumption 1] Linear dynamics and rewards: There exists unknown $w^{\star} \in \mathbb{R}^d$ and known features $\phi : S \times A \times S \to \mathbb{R}^d$, $\psi : S \times A \to \mathbb{R}^d$ such that

 $P(s' \mid s, a) = \langle w^{\star}, \ \phi(s, a, s') \rangle \quad \text{and} \quad \mathbb{E}[r(s, a)] = \langle w^{\star}, \ \psi(s, a) \rangle$

• [Assumption 1] Linear dynamics and rewards: There exists unknown $w^{\star} \in \mathbb{R}^d$ and known features $\phi : S \times A \times S \to \mathbb{R}^d$, $\psi : S \times A \to \mathbb{R}^d$ such that

 $P(s' \mid s, a) = \langle w^{\star}, \ \phi(s, a, s') \rangle \quad \text{and} \quad \mathbb{E}[r(s, a)] = \langle w^{\star}, \ \psi(s, a) \rangle$

Polynomial sample complexity is possible here [Modi et al., 2020; Ayoub et al., 2020])

• Linear "model-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{w \in \mathbb{R}^d\}$

• Linear "model-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{w \in \mathbb{R}^d\}$ Define for each hypothesis $w \in \mathcal{F}$, $P_w(s'|s, a) = \langle w, \phi(s, a, s') \rangle$,

• Linear "model-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{w \in \mathbb{R}^d\}$ Define for each hypothesis $w \in \mathcal{F}$, $P_w(s'|s, a) = \langle w, \phi(s, a, s') \rangle$, $Q_w(s, a)$, $V_w(s)$ and $\pi_w(s)$ as the optimal functions for model P_w

• Linear "model-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{w \in \mathbb{R}^d\}$ Define for each hypothesis $w \in \mathcal{F}$, $P_w(s'|s, a) = \langle w, \phi(s, a, s') \rangle$, $Q_w(s, a)$, $V_w(s)$ and $\pi_w(s)$ as the optimal functions for model P_w

Analogous structural property holds here:

• Bilinear Regret: on policy difference between claimed reward $\mathbb{E}[Q_w - V_w]$ and true reward $\mathbb{E}[r]$ satisfies a bilinear form

 $\mathbb{E}_{\pi_w}[Q_w(s_h, a_h) - r(s_h, a_h) - V_w(s_{h+1})]$

• Linear "model-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{w \in \mathbb{R}^d\}$ Define for each hypothesis $w \in \mathcal{F}$, $P_w(s'|s, a) = \langle w, \phi(s, a, s') \rangle$, $Q_w(s, a)$, $V_w(s)$ and $\pi_w(s)$ as the optimal functions for model P_w

Analogous structural property holds here:

$$\mathbb{E}_{\pi_w} [Q_w(s_h, a_h) - r(s_h, a_h) - V_w(s_{h+1})]$$

= $\left\langle w - w^{\star}, \quad \mathbb{E}_{\pi_w} \left[\psi(s_h, a_h) + \sum_{\bar{s} \in S} \phi(s_h, a_h, \bar{s}) V_w(\bar{s}) \right] \right\rangle$

• Linear "model-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{w \in \mathbb{R}^d\}$ Define for each hypothesis $w \in \mathcal{F}$, $P_w(s'|s, a) = \langle w, \phi(s, a, s') \rangle$, $Q_w(s, a)$, $V_w(s)$ and $\pi_w(s)$ as the optimal functions for model P_w

Analogous structural property holds here:

• Bilinear Regret: on policy difference between claimed reward $\mathbb{E}[Q_w - V_w]$ and true reward $\mathbb{E}[r]$ satisfies a bilinear form

$$\mathbb{E}_{\pi_w} [Q_w(s_h, a_h) - r(s_h, a_h) - V_w(s_{h+1})]$$

= $\left\langle w - w^{\star}, \quad \mathbb{E}_{\pi_w} \left[\psi(s_h, a_h) + \sum_{\bar{s} \in S} \phi(s_h, a_h, \bar{s}) V_w(\bar{s}) \right] \right\rangle$

• Data reuse: There exists loss function $\ell_w(\cdot)$ such that the bilinear form for any hypothesis w' is estimable when playing π_w

$$\mathbb{E}_{\pi_w}[\ell(s_h, a_h, r_h, s_{h+1}, w')] = \left\langle \boldsymbol{w'} - \boldsymbol{w}^\star, \mathbb{E}_{\pi_w} \left[\sum_{\bar{s} \in \mathcal{S}} \phi(s_h, a_h, \bar{s}) V_w(\bar{s}) \right] \right\rangle$$

• Linear "model-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{w \in \mathbb{R}^d\}$ Define for each hypothesis $w \in \mathcal{F}$, $P_w(s'|s, a) = \langle w, \phi(s, a, s') \rangle$, $Q_w(s, a)$, $V_w(s)$ and $\pi_w(s)$ as the optimal functions for model P_w

Analogous structural property holds here:

• Bilinear Regret: on policy difference between claimed reward $\mathbb{E}[Q_w - V_w]$ and true reward $\mathbb{E}[r]$ satisfies a bilinear form

$$\mathbb{E}_{\pi_w} [Q_w(s_h, a_h) - r(s_h, a_h) - V_w(s_{h+1})]$$

= $\left\langle w - w^{\star}, \quad \mathbb{E}_{\pi_w} \left[\psi(s_h, a_h) + \sum_{\bar{s} \in S} \phi(s_h, a_h, \bar{s}) V_w(\bar{s}) \right] \right\rangle$

• Data reuse: There exists loss function $\ell_w(\cdot)$ such that the bilinear form for any hypothesis w' is estimable when playing π_w

$$\mathbb{E}_{\pi_w}[\ell(s_h, a_h, r_h, s_{h+1}, w')] = \left\langle \boldsymbol{w'} - \boldsymbol{w^\star}, \mathbb{E}_{\pi_w} \Big[\sum_{\bar{s} \in \mathcal{S}} \phi(s_h, a_h, \bar{s}) V_w(\bar{s}) \Big] \right\rangle$$

Here the loss function is

$$\ell_w(s_h, a_h, r_h, s_{h+1}, w') = w'_h^\top \Big(\psi(s_h, a_h) + \sum_{\bar{s} \in \mathcal{S}} \phi(s_h, a_h, \bar{s}) V_w(\bar{s}) \Big) - V_w(s_{h+1}) - r_h$$

Generalization in RL

• [Assumption 1] Low rank MDP: There exists unknown features $\phi : S \times A \to \mathbb{R}^d$, $\psi : S \to \mathbb{R}^d$ such that

 $P^{\star}(s'|s,a) = \langle \phi(s,a), \ \psi(s) \rangle$

• [Assumption 1] Low rank MDP: There exists unknown features $\phi : S \times A \to \mathbb{R}^d$, $\psi : S \to \mathbb{R}^d$ such that

 $P^{\star}(s'|s,a) = \langle \phi(s,a), \psi(s) \rangle$

Polynomial sample complexity is possible here [Agarwal et al. 2020]

• Linear "model-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{(\phi, \psi) \in \Phi \times \Psi\}$

• Linear "model-based" Hypothesis class \mathcal{F} :

set of all (bounded) linear vectors $\mathcal{F} = \{(\phi, \psi) \in \Phi \times \Psi\}$ Define for each hypothesis $w \in \mathcal{F}$, $P_w(s'|s, a) = \langle \phi(s, a), \psi(s) \rangle$,

• Linear "model-based" Hypothesis class \mathcal{F} :

set of all (bounded) linear vectors $\mathcal{F} = \{(\phi, \psi) \in \Phi \times \Psi\}$ Define for each hypothesis $w \in \mathcal{F}$, $P_w(s'|s, a) = \langle \phi(s, a), \psi(s) \rangle$, $Q_w(s, a), V_w(s), \pi_w(s)$ as the optimal functions for model $P_w(s'|s, a)$

• Linear "model-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{(\phi, \psi) \in \Phi \times \Psi\}$ Define for each hypothesis $w \in \mathcal{F}$, $P_w(s'|s, a) = \langle \phi(s, a), \psi(s) \rangle$, $Q_w(s, a), V_w(s), \pi_w(s)$ as the optimal functions for model $P_w(s'|s, a)$

Analogous structural property holds here:

• Bilinear Regret: on policy difference between claimed reward $\mathbb{E}[Q_w-V_w]$ and true reward $\mathbb{E}[r]$ satisfies a bilinear form

 $\mathbb{E}_{\pi_w} \left[Q_w(s_h, a_h) \right) - r(s_h, a_h) - \mathbb{E} V_w(s_{h+1}) \right]$

• Linear "model-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{(\phi, \psi) \in \Phi \times \Psi\}$ Define for each hypothesis $w \in \mathcal{F}$, $P_w(s'|s, a) = \langle \phi(s, a), \psi(s) \rangle$, $Q_w(s, a), V_w(s), \pi_w(s)$ as the optimal functions for model $P_w(s'|s, a)$

Analogous structural property holds here:

$$\begin{split} & \mathbb{E}_{\pi_{w}} \left[Q_{w}(s_{h}, a_{h}) \right) - r(s_{h}, a_{h}) - \mathbb{E} V_{w}(s_{h+1}) \right] \\ & = \mathbb{E}_{\pi_{w}} \int_{s} (\mu^{\star}(s))^{\top} \phi^{\star}(s_{h-1}, a_{h-1}) \left[V_{w}(s) - r(s, \pi_{w}(s)) - \mathbb{E} V_{w}(s') \right] ds \end{split}$$

• Linear "model-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{(\phi, \psi) \in \Phi \times \Psi\}$ Define for each hypothesis $w \in \mathcal{F}$, $P_w(s'|s, a) = \langle \phi(s, a), \psi(s) \rangle$, $Q_w(s, a), V_w(s), \pi_w(s)$ as the optimal functions for model $P_w(s'|s, a)$

Analogous structural property holds here:

$$\begin{split} & \mathbb{E}_{\pi_{w}} \left[Q_{w}(s_{h}, a_{h})) - r(s_{h}, a_{h}) - \mathbb{E}V_{w}(s_{h+1}) \right] \\ & = \mathbb{E}_{\pi_{w}} \int_{s} (\mu^{\star}(s))^{\top} \phi^{\star}(s_{h-1}, a_{h-1}) \left[V_{w}(s) - r(s, \pi_{w}(s)) - \mathbb{E}V_{w}(s') \right] ds \\ & = \left\langle \int_{s} (\mu^{\star}(s))^{\top} \left[V_{w}(s) - r(s, \pi_{w}(s)) - \mathbb{E}V_{w}(s') \right] ds, \ \mathbb{E}_{\pi_{w}} \left[\phi^{\star}(s_{h-1}, a_{h-1}) \right] \right\rangle \end{split}$$

• Linear "model-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{(\phi, \psi) \in \Phi \times \Psi\}$ Define for each hypothesis $w \in \mathcal{F}$, $P_w(s'|s, a) = \langle \phi(s, a), \psi(s) \rangle$, $Q_w(s, a), V_w(s), \pi_w(s)$ as the optimal functions for model $P_w(s'|s, a)$

Analogous structural property holds here:

• Bilinear Regret: on policy difference between claimed reward $\mathbb{E}[Q_w-V_w]$ and true reward $\mathbb{E}[r]$ satisfies a bilinear form

$$\begin{split} & \mathbb{E}_{\pi_{w}} \left[Q_{w}(s_{h}, a_{h}) \right) - r(s_{h}, a_{h}) - \mathbb{E}V_{w}(s_{h+1}) \right] \\ &= \mathbb{E}_{\pi_{w}} \int_{s} (\mu^{\star}(s))^{\top} \phi^{\star}(s_{h-1}, a_{h-1}) \left[V_{w}(s) - r(s, \pi_{w}(s)) - \mathbb{E}V_{w}(s') \right] ds \\ &= \left\langle \int_{s} (\mu^{\star}(s))^{\top} \left[V_{w}(s) - r(s, \pi_{w}(s)) - \mathbb{E}V_{w}(s') \right] ds, \ \mathbb{E}_{\pi_{w}} \left[\phi^{\star}(s_{h-1}, a_{h-1}) \right] \right\rangle \end{split}$$

• Data reuse: There exists loss function $\ell_w(\cdot)$ such that the bilinear form for any hypothesis w' is estimable

• Linear "model-based" Hypothesis class \mathcal{F} : set of all (bounded) linear vectors $\mathcal{F} = \{(\phi, \psi) \in \Phi \times \Psi\}$ Define for each hypothesis $w \in \mathcal{F}$, $P_w(s'|s, a) = \langle \phi(s, a), \psi(s) \rangle$, $Q_w(s, a), V_w(s), \pi_w(s)$ as the optimal functions for model $P_w(s'|s, a)$

Analogous structural property holds here:

• Bilinear Regret: on policy difference between claimed reward $\mathbb{E}[Q_w-V_w]$ and true reward $\mathbb{E}[r]$ satisfies a bilinear form

$$\begin{split} & \mathbb{E}_{\pi_{w}} \left[Q_{w}(s_{h}, a_{h})) - r(s_{h}, a_{h}) - \mathbb{E}V_{w}(s_{h+1}) \right] \\ & = \mathbb{E}_{\pi_{w}} \int_{s} (\mu^{\star}(s))^{\top} \phi^{\star}(s_{h-1}, a_{h-1}) \left[V_{w}(s) - r(s, \pi_{w}(s)) - \mathbb{E}V_{w}(s') \right] ds \\ & = \left\langle \int_{s} (\mu^{\star}(s))^{\top} \left[V_{w}(s) - r(s, \pi_{w}(s)) - \mathbb{E}V_{w}(s') \right] ds, \ \mathbb{E}_{\pi_{w}} \left[\phi^{\star}(s_{h-1}, a_{h-1}) \right] \right\rangle \end{split}$$

• Data reuse: There exists loss function $\ell_w(\cdot)$ such that the bilinear form for any hypothesis w' is estimable

$$\ell_w(s_h, a_h, r_h, s_{h+1}, w') = \frac{\mathbf{1}\{a_h = \pi_{w'}(s)\}}{1/A} \left(Q_{w'}(s_h, a_h) - r_h - V_{w'}(s_{h+1}) \right)$$

Thanks!

• A generalization theory in RL is possible!

- linear bandit theory \rightarrow RL theory (bilinear classes) is rich.
 - covers known cases and new cases
 - leads to simple algorithm and proof

• Open Questions

- Computational Statistical Tradeoff.
- Agnostic Realizable Equivalence

Simon Du

Shachar Lovett

Sham Kakade

Wen Sun

Jason Lee

Ruosong Wang