Computational-Statistical Gaps in Reinforcement Learning

Talk By: Gaurav Mahajan (UCSD)

Progress of RL in practice (And It Ain't Cheap)

Prosthetics Loon Search

Progress of RL in practice (And It Ain't Cheap)

Prosthetics Loon Search

> Huge computational and statistical demands.
» Computational: OpenAl Five trained for 10 months.
» Statistical: Played 10,000 years of games.

Goal: design statistically and computationally “efficient” algorithms in RL

Framework for RL: MDPs and Trees

Set1, Re

N

Environment Agent
At

» Stochastic Transition Seyq1 ~ T(St, A¢)
Next state given current state and action
» Stochastic Reward Ry ~ R(S:, At)
Next reward given current state and action

» Goal: Find a policy @ which maximizes the
expected sum of rewards V(7) = E [Z?’:[) R:

d

Framework for RL: MDPs and Trees

Set1, Re

N

Environment Agent
A

» Stochastic Transition Seyq1 ~ T(St, A¢)
Next state given current state and action
» Stochastic Reward Ry ~ R(S:, At)
Next reward given current state and action

» Goal: Find a policy @ which maximizes the
expected sum of rewards V(7) = E [Z?’:[) R:

d

» Deterministic Transition

» Stochastic Reward
Each edge e is associated with a noisy reward Re.

» Goal: Find a path 7 which maximizes the
expected sum of rewards. V(7) = E [Z:’ew Re] ,

This Talk: Interaction And Compute

Interaction Y
o
o
@ o
@
@
o
Environment
Compute

Statistical: amount of interaction with the environment
to find near optimal policy

Computational: amount of compute
to find near optimal policy

near optimal policy m: V™ > V — ¢

This Talk: Goal

This Talk: Goal

» MDPs with sample efficient algorithms (Pgata)

This Talk: Goal

» MDPs with sample efficient algorithms (Pgata)
» MDPs with computationally efficient algorithms (Pcompute)

This Talk: Goal

» MDPs with sample efficient algorithms (Pgata)
» MDPs with computationally efficient algorithms (Pcompute)

Goal: characterize these classes of MDPs

Classical Theory: Dependence on S or AH

Q1: How many samples/compute do we need to find a near optimal policy?
for S states, A actions and H horizon

o |Start

XS

Classical Theory: Dependence on S or AH

Q1: How many samples/compute do we need to find a near optimal policy?
for S states, A actions and H horizon

o |Start

-7

» Theorem (Kearns & Singh '98; ..., Kearns, Mansour, & Ng '00)
min(poly(S), A"') samples/compute are sufficient and necessary to find a near optimal policy.

> Algorithmic ldeas: Optimism + Dynamic Programming + Bonus
» Hard Instance: Tree with reward only at a special leaf node.

With Assumptions: Independent of S.

But Dota2 has S ¢ R16090 Horizon H ~ 20000!!!

Q2: Can we find a near optimal policy with no |S|, |A| dependence
and poly(H, “complexity measure”)?

» Polynomial Sample Complexity

>

VVYVYVYYVYYVYY

Bellman Rank: [Jiang+ '17]

Linear MDPs: [Wang & Yang '18; Jin+ '19]

Linear Bellman Completion: [Zanette+ '19, Wang+ '2019]
Block MDPs [Du+ '19]

Factored MDPs [Sun+ '19]

Kernelized Nonlinear Regulator [Kakade+ '20]

FLAMBE / Feature Selection: [Agarwal+ '20]

Linear Mixture MDPs: [Modi+ '20, Ayoub+ '20, Zhou+ '21]
And more. ..

This Talk

» Too strong. Unlikely to be necessary.
Want to exploit understanding of neural
networks.

This Talk

» Too strong. Unlikely to be necessary.
Want to exploit understanding of neural
networks.

> Different proofs, algorithms. Structural
property like VC dimension in supervised
learning.

This Talk

Too strong. Unlikely to be necessary.
Want to exploit understanding of neural
networks.

Different proofs, algorithms. Structural
property like VC dimension in supervised
learning.

Few computational results. When can
we design computationally efficient
algorithms?

This Talk

Too strong. Unlikely to be necessary.
Want to exploit understanding of neural
networks.

Different proofs, algorithms. Structural
property like VC dimension in supervised
learning.

Few computational results. When can
we design computationally efficient
algorithms?

This Talk

» Introduce fundamental and natural setting:

Linear Function Approximation.
»> Boundary of necessary vs sufficient

»> Sample efficiency under Linear Function
Approximation
> Unifying Sufficient Structural
Assumption for Sample Efficiency
[DKLLMSW '21]

» Computational World: Different from
Statistical World under Linear Function
Approximation [KLLM '22]

Overview

Part 0: Natural Assumptions
RL with Linear Function Approximation

Part 1: Why is RL hard?
Baseline: Regression Chaining

Part 2: Sample Efficiency
Algorithmic Ideas in Theory

Part 3: Computational Efficiency
Different from sample efficiency
Hard Instances

Part 0: RL with Linear Function Approximation

natural assumptions in RL

Linear Function Approximation

» Fundamental in theory: A lot of algorithms try to learn optimal value functions

H H
V*(s):quE{E Rt|50:s,7r}, Q" (s,a) = maxE E Ri|so =s Ao =a,m
us ™
t=0 t=0

» Fundamental in practice: A lot of model free algorithms used in practice try to learn the optimal value
functions

» Trains a neural network to predict optimal V* and Q* functions

]
® o
sk
(5.2 Pe e V(9.Q(s9)

L

([J

Representation Learning Learning Linear Functions
Learn features Learn optimal value functions linear in these features

Linear Function Approximation: Linear Q*&V*

> Basic idea: Assume our neural networks learned “good” representations (features) ¢(s, a), % (s) € R? (where
d < #states, #actions).

Linear Function Approximation

» Linear Q*: There exists unknown w* € R and known features ¢:SXA— R st.

Q@ (s,a) = (w", ¢(s,a))

» Linear V*: There exists unknown 0* € R and known features ¢ : S — RY s.t.

Vi(s) = (6%, ¥(s))

> Lots of interesting variants: Linear Q*, Linear V*, Linear Q*&V* (reachable states).

Linear Function Approximation: Linear Q*&V*

> Basic idea: Assume our neural networks learned “good” representations (features) ¢(s, a), % (s) € R? (where
d < #states, #actions).

Linear Function Approximation
» Linear Q*: There exists unknown w* € R and known features ¢:SXA— R st.

Q@ (s,a) = (w", ¢(s,a))

» Linear V*: There exists unknown 0* € R and known features ¢ : S — RY s.t.

Vi(s) = (6%, ¥(s))

> Lots of interesting variants: Linear Q*, Linear V*, Linear Q*&V* (reachable states).
> Weak Assumption. Implied by a lot of previous assumptions: Linear MDP, Linear Bellman Complete, ..
» Counterpart in supervised learning is well understood

» What's efficiently possible in RL compared to supervised learning.

Part 1: Why is RL hard?

Connections to Bandits and Trees

Why is RL hard: From Bandits Theory

» Recall Linear @* means

Q*(s,a) = (w*, ¢(s, a)) where ¢(s,a) € R?.

» Approach: Learn the linear function Q*(s, a) uniformally over all state action pairs!

» Need something stronger than regression .
to learn w* from estimates of the value function on different state action pairs {Q* (s, a)}s,a

Why is RL hard: From Bandits Theory

» Proposition (John '48)

every ¢(s,a) can be written in terms of ¢(s1,a1), ...

5 a) Z al¢(5n 31

There exists O(d) state-action pairs {(s1, a1), (s2,a2), ...,

(sd, aq)} such that

, ¢(sd, ag) with small coefficients.

and |lallz < Vd

> This implies Q*(s, a) can be written in terms of {Q*(s;,

aj)} with small coefficients

Za,¢(s,,a, = Q"(s,a) ZaQ Si, aj)

» Using good estimates O(s,-, aj) on these “landmark” state action pairs,

we can build good estimates Q(s, a) = Z,a;@(s;7 aj) for

» How much does the error grow?

any state-action pair (s, a).

|Q"(s.2) — Qs 3)| < [lall max [Q* (i, &) — Qsi, a)| < O(d) max | Q" (si, ai) —

Q(si,

aj)|

16

Attempt 1: Regression Chaining

We now have a different “landmark” set (John's basis) J, for every level h.

Attempt 1: Regression Chaining
We now have a different “landmark” set (John's basis) J, for every level h.

» Error for John's basis at last layer:

max |[Q*(s,a) — Q(s, a)| < O(e)
(s,a)€dy

Attempt 1: Regression Chaining
We now have a different “landmark” set (John's basis) J, for every level h.

» Error for John's basis at last layer:

max ‘Q* (s,a) — Q(s, a)‘ < O(e)
(s,a)€Jy

» Error for every (sy, a) at last level:

| @ (s#.) — Qs 3)| < e < O(de)

Attempt 1: Regression Chaining
We now have a different “landmark” set (John's basis) J, for every level h.

» Error for John's basis at last layer:

max ‘Q* (s,a) — Q(s, a)‘ < O(e)
(s,a)€Jy

» Error for every (sy, a) at last level:
| Q" (s1.2) — Qsw, 2)| < llale < O(ce)
» Error for John's basis at second last layer:

max
(s,a)€Jp—1

Q" (s,2) = Q5,3)| < Eqy (s [|V*(s1) = Ws)|] < O(d)

Attempt 1: Regression Chaining
We now have a different “landmark” set (John's basis) J, for every level h.

» Error for John's basis at last layer:

max ‘Q* (s,a) — Q(s, a)‘ < O(e)
(s,a)€Jy

» Error for every (sy, a) at last level:
| Q" (s1.2) — Qsw, 2)| < llale < O(ce)
» Error for John's basis at second last layer:

max
(s,a)€Jp—1

Q“(5,a) = Q(s.2)| < Eqyris,n) [|V¥(sw) = Vsw)|| < O(de)
» Error for every (sy_1,a) at second last level:

Q" (sH-1,2) — Qsn—1,a)| < [laf|l1de < O(d%¢)

Attempt 1: Regression Chaining
We now have a different “landmark” set (John's basis) Jj, for every level h.

» Error for John's basis at last layer:

mox ‘Q (s,a) — Q(s, a)‘ < O(e)

(s,a)€dy
» Error for every (sy, a) at last level:
| Q" (s1.2) — Qsw, 2)| < llale < O(ce)
» Error for John's basis at second last layer:

max
(s,a)€JH—1

Q“(5,a) = Q(s.2)| < Eqyris,n) [|V¥(sw) = Vsw)|| < O(de)
» Error for every (sy_1,a) at second last level:

Q" (sH-1,2) — Qsn—1,a)| < [laf|l1de < O(d%¢)

Issue: The error grows by a factor of d every level.

Leading to d" sample and computational complexity. Can be improved to dvH.

Part 1l: Sample Efficiency
Algorithmic Ideas

Goal: Improve upon the O(d\/p) sample complexity of regression chaining.

What more can we do?

Q: We do not observe Q* and V*. Then, what do we observe?

A: Local Consistency!
Q (57 a) = Er~R(s,a) [I’] + IEs’NT(S,a) [V* (S/)]
V*(s) = max Q" (s, a)
a

(A)
(B)

What more can we do?

Q: We do not observe Q* and V*. Then, what do we observe?

A: Local Consistency!
Q (57 a) = Er~R(s,a) [I‘] + IES’NT(S,a) [V* (S/)]
V*(s) = max Q" (s, a)
a

» Recall Linear Q* and Linear V* means

Q' (s;a) = (W', ¢(s,2)) and V'(s) = (07, %(s))

(A)
(B)

What more can we do?

Q: We do not observe Q* and V*. Then, what do we observe?

A: Local Consistency!
Q" (57 3) = Er~R(s,a) [r] + IEs’NT(s,a) [V* (5/)]
V*(s) = max Q* (s, a)

» Recall Linear Q* and Linear V* means
Q*(s,a) = (W', ¢(s,a)) and V*(s) = (0", %(s))

» Equation (A) is a Linear Constraint

Equation (A) can be enforced by estimating “consistency feature” vector [¢(s, a), —E7(¢(5')), —Egr(r)].

<W*v ¢(57 a)) - <17 ErNR(s,a)[r]> - <9*v]Es’~T(s,a) [w(S/)D =0
(w",07,1],[6(s, a), ~E7(¥(s)), —~Er(n)]) = 0

We should create John's basis for these “consistency feature” vectors.

What more can we do?

Q: We do not observe Q* and V*. Then, what do we observe?

A: Local Consistency!
Q" (57 a) = Er~R(s,a) [r] + ES’NT(S,a) [V* (5/)] (A)
V*(s) = max Q* (s, a) (B)

» Recall Linear Q* and Linear V* means
Q(s,a) = (W, ¢(s,a)) and V*(s) = (0,9(s))

» Equation (A) is a Linear Constraint
Equation (A) can be enforced by estimating “consistency feature” vector [¢(s, a), —E7(¢(5')), —Egr(r)].

<W*7 ¢(57 a)) - <1a ErNR(s,a)[r]> - <9*v]Es’~T(s,a) [w(S/)D =0
(w",07,1],[6(s, a), ~E7(¥(s)), —~Er(n)]) = 0
We should create John's basis for these “consistency feature” vectors.
» Enforcing Equation (B) is free!.
Enforcing Equation (B) does *not* require any interaction with transition and rewards function.

Vi (s) = (0%, (s)) = max(w", (s, 3)) = max Q" (s, 3)

Polynomial Sample Complexity under Linear Function Approximation

Theorem (Du, Kakade, Lee, Lovett, M., Sun, Wang '21)
» Bilinear class: a special class of MDPs.
set of MDPs where (a generalization of) Equation (A) is a low degree polynomial.
» All “named” models are bilinear classes.
> Sample efficient algorithm (poly(d, H)) for all bilinear classes.

» Linear Q*&V* is a bilinear class.
> Need only poly(d, H) samples when both @* and V* are linear.

» For other variants, enforce Equation (A) by multiplying the constraint for all actions.[Weisz, Amortila,
Janzer, Abbasi-Yadkori, Jiang, Szepesvari '21]

» Phase transition happens when only Q* or V* is linear.
(series of works [Weisz, Amortila, Szepesvari ‘21; ..; Wang, Wang, Kakade ‘21])

Al =2 [JAl= (d7) | [Al= exp(d)

linear @ and V* v v v
linear @* and V* (reachable) v X X
linear Q* v X X

linear V* v X X

Simple Global Algorithm: BiLin-UCB

>

First we remove candidates which don't satisfy Equation (B)
so only need to satisfy Equation (A).

Algorithm 1: BiLin-UCB

Parameters number of iterations T, batch size m, confidence radius R
Initialize constraint o : RY x RY — R as o(w,0) =0
for iteration t=10,1,..., T— 1 do
Find the optimistic (wt, 6):
(wt, 0¢) := argmax (6, (sp)) subject to o?(w,0) < R
(w,0)
Sample m trajectories using 7 and create a batch dataset of size mH:
D = {(rn, Sh, an, sp+1) € trajectories}

Update the constraint o2 (-)

return: the best m; found until now.

o2(w,0) « o?(w,0) +Ep BW, d(shyan)) — rn — <9,1ZJ(5;,+1)>}2

Part Ill: Computational Complexity of RL

Hard Instances

Goal: Improve upon the O(d\/ﬁ) computational complexity of regression chaining.

22

Global vs Local Algorithm

» A global algorithm exists! Computationally inefficient.

> Regression Chaining (Du, Lee, M., Wang '19) Takes exp(H) time. Can be improved to exp(v/H).

> BiLin-UCB (Du, Kakade, Lee, Lovett, M., Sun, Wang '21): Loops over all linear functions!
» TensorPlan (Weisz, Szepesvari, Gyorgy '21) Takes exp(d) time.

» Open Question: Can we design polynomial time algorithms under linear function approximation?

Computational-Statistical Gap

» Theorem (Kane, Liu, Lovett, M., 2022)

Unless NP = RP, no polynomial time algorithm exists for RL with linear function approximation.

Al=2 | |Al=Q(d'/?) | |Al=exp(d)

linear Q* and V*
linear Q* and V* (reachable)
linear Q*
linear V*

x| x| x| X

R IR IR R

x| x| x| X

» Hardness for all the variants of linear function approximation
even in the easiest case: deterministic transition + 2 actions.

» Unlike classical theory, computational and statistical worlds are really different.
> Reinforcement vs Supervised Learning.

> Learning features which allow target functions to be linear are not enough.

Reduction: 3-SAT to MDP with Linear @ and V*

Complexity problem 3-SAT

Input: a CNF formula ¢ with v variables, O(v) clauses.
Goal: is ¢ satisfiable?

» CNF Formula: (x1 VxaVx3) A (X1 Vx2Vx3)A (X1 VX3V xq)

> Satisfying Assignment: (1,1,—1,1)

3-SAT Input Reduction

(CNF Formula)

Asat

3-SAT Solution

Satisfying Assi t
(Satisfying Assignment) Reduction

RL Input

(MDP with Linear Q* and V*)

RL Solution

(Near Optimal Policy)

Hard Instance

» We need to embed a hard problem, 3SAT, in RL.

» Let's start with non-constant number of actions.

26

Hard Instance

» We need to embed a hard problem, 3SAT, in RL.

» Let's start with non-constant number of actions.

(-1,-1,-1,...,-1) O

> Every state is some assignment to 3SAT variables.

26

Hard Instance

» We need to embed a hard problem, 3SAT, in RL.

» Let's start with non-constant number of actions.

(1,—=1,—1,...,—1)

2y (-1,1,-1,...,-1)
(-1,-1,-1,...,—1)
X3 Q (-1,-1,1,...,-1)

(=1,—-1,-1,...,1)

> Every state is some assignment to 3SAT variables.

P v actions correspond to flipping the assignment for each of the v variables.

26

Hard Instance

» We need to embed a hard problem, 3SAT, in RL.

» Let's start with non-constant number of actions.
(1,-1,-1,...,-1)
o »O(=1,1,-1,..., 1)

(-1,-1,-1,...,—1)
X3 Q (-1,-1,1,...,-1)

(=1,—-1,-1,...,1)

> Every state is some assignment to 3SAT variables.
P v actions correspond to flipping the assignment for each of the v variables.

» Reward = 1 only when you reach some fixed satisfying assignment w*. Otherwise 0.

Hard Instance: Issues
X3 O @,-1,1,..., —-1)
(-1,-1,-1,..., —1) O O (1,-1,-1,-1,1,..., —1)
O (-1,-1,1,..., —1)
» For horizon H = v, Solving RL == solving 3SAT.

» Issue 1: We can not write Q* or V* linearly.
Value of assignment w at level | (here D(w, w*) is hamming distance between w and w*)

V (w,) = 1 if D(w,w*) < H—1
7710 otherwise

» Issue 2: The rewards are deterministic.
There exists polynomial time algorithms when rewards are deterministic (Gaussian Elimination).

Hard Instance: Issues

P Let's add randomness. Bernoulli reward.
Expected reward on reaching w at level /

H+D(w,w*) .o, o
1_T if l=Horw=w*

E[R(W’ I)] = {0

otherwise

» We can show in this case the optimal policy is to go towards w* as fast as possible.

Therefore, value of assignment w at level /

_ 14+ D(w, w*)

Vi(w,) =1
) o

Since hamming distance is linear in w and w*, V* is also linear in w and w*

Hard Instance: Issues

P Let's add randomness. Bernoulli reward.
Expected reward on reaching w at level /

H+D(w,w*) .o o
I_T if l=Horw=w*

E[R(w,)] = {O

otherwise

P> We can show in this case the optimal policy is to go towards w* as fast as possible.

Therefore, value of assignment w at level /

_ 14+ D(w, w*)

Vi(w,) =1
) o

Since hamming distance is linear in w and w*, V* is also linear in w and w*

P> New issue: We leak a lot of reward information at the last layer.
Can not simulate D(w, w*) efficiently.
This can be fixed but a bit technical.

Hard Instance: Issues

> Expected reward on reaching w at level /

HD(w,w*)\" oy _
E[R(w,] = (I_T) if |I=Horw=w*
0 otherwise

» Same as before the optimal policy is to go towards w* as fast as possible.
Therefore, value of assignment w at level /

VE(w,) = (1_ M)r

H+v

V* is a polynomial of degree rin w and w*.
In terms of its monomials, V* is linear in d = v dimensional features.

Hard Instance: Issues

» Consider a polynomial time algorithm for RL.
Since, our dimension d and horizon H are both d = H= V',
the algorithm runs in poly(v") time.

> But the expected reward at the last layer is at most

(1 - H—:’V) co(v")

» Therefore, any polytime algorithm with high probability only sees 0 at the last layer.

» We can simulate this algorithm efficiently by always returning 0 on the last layer
(and only slightly decreasing the success probability)!

30

Hard Instance: v actions to 3 actions

» There always exists a variable we can flip to get closer to the optimal solution.

P The three actions available are the variables in the unsatisfied clause
(one such clause exists, because current assignment is not satisfying assignment.)

Consider the following CNF formula
(x1 Vx2Vx3)A(x1 VxaVx3)A(Xx1 Vx3Vxg)A(x1VxaVx3)A (X1 VxeVx3)A(x3VxgVxg)A(x1VxgVxy).

Hard Instance: v actions to 3 actions

» There always exists a variable we can flip to get closer to the optimal solution.

P The three actions available are the variables in the unsatisfied clause
(one such clause exists, because current assignment is not satisfying assignment.)

Consider the following CNF formula
(x1 Vx2Vx3)A(x1 VxaVx3)A(Xx1 Vx3Vxg)A(x1VxaVx3)A (X1 VxeVx3)A(x3VxgVxg)A(x1VxgVxy).

(-1,-1,-1,-1) O

Hard Instance: v actions to 3 actions

» There always exists a variable we can flip to get closer to the optimal solution.

P The three actions available are the variables in the unsatisfied clause
(one such clause exists, because current assignment is not satisfying assignment.)

Consider the following CNF formula
(x1 Vx2Vx3)A(x1 VxaVx3)A(Xx1 Vx3Vxg)A(x1VxaVx3)A (X1 VxeVx3)A(x3VxgVxg)A(x1VxgVxy).

x1 V xa V x3
(-1-1,-1,-10

Hard Instance: v actions to 3 actions

» There always exists a variable we can flip to get closer to the optimal solution.

P The three actions available are the variables in the unsatisfied clause
(one such clause exists, because current assignment is not satisfying assignment.)

Consider the following CNF formula
(x1 Vx2Vx3)A(x1 VxaVx3)A(Xx1 Vx3Vxg)A(x1VxaVx3)A (X1 VxeVx3)A(x3VxgVxg)A(x1VxgVxy).

(1,—-1,—-1,-1)

X1
X1V x2 Vxg x2
(~1,-1,-1,-1) O

(=1,-1,1,—-1)

Hard Instance: v actions to 3 actions

» There always exists a variable we can flip to get closer to the optimal solution.

P The three actions available are the variables in the unsatisfied clause
(one such clause exists, because current assignment is not satisfying assignment.)

Consider the following CNF formula
(x1 Vx2Vx3)A(x1 VxaVx3)A(Xx1 Vx3Vxg)A(x1VxaVx3)A (X1 VxeVx3)A(x3VxgVxg)A(x1VxgVxy).

X1V x2 V x3
(1,-1,-1,-1)

O

x1

X1V x2 Vxg x2
(~1,-1,-1,-1) O

X1 V xg VX3
(-1,-1,1,-1)

Hard Instance: v actions to 3 actions

» There always exists a variable we can flip to get closer to the optimal solution.

P The three actions available are the variables in the unsatisfied clause
(one such clause exists, because current assignment is not satisfying assignment.)

Consider the following CNF formula
(x1 Vx2Vx3)A(x1 VxaVx3)A(Xx1 Vx3Vxg)A(x1VxaVx3)A (X1 VxeVx3)A(x3VxgVxg)A(x1VxgVxy).

(1,1, -1,-1)

X VxaVxg X
(1,-1,-1,—1

X1V x2 V xg

[(1,-1,1,-1)

(=1,-1,1,—-1)

Hard Instance: 3 actions to 2 actions

(=1,—1,—1,--+)

=1 x O(Lfl,fl,m

1
X1, X: X
X1V x2 V x3 ba, 2 O<: 1,1, -1
(=1,-1,—-1,--+) O(—; sy — Ly

I=2

I=1 /=2

X3

» We replace the three actions by 2 actions, grouping any two actions together.

(=1,-1,1,-
O e

)

32

What have we learned?

» Computational-Statistical Gap in RL with Linear Function Approximation.

» Simple sample efficient algorithm works for all known “named” models.
> Novel construction exposing computational hardness.

» Reinforcement vs Supervised Learning.

» Learning features which allow target functions to be linear are not enough.
» We need more assumptions for RL.

» Tight characterization of computational complexity of RL.
> Best Upper Bounds: Takes exp(v/Hlog d) or exp(d) time.
» Best Lower Bound: No polynomial time algorithm exists.
> Can we close this gap? (maybe there exist a quasi-polynomial time algorithm)

Thanks!

Sihan Liu

Joint work with:

Sham Kakade

Shachar Lovett

Daniel Kane

Wen Sun

Jason Lee

Ruosong Wang

34

Proof intuition

» The proof follows from this lemma about existence of high quality policy.

Lemma (Existence of high quality policy)
Suppose we run the algorithm for T = d iterations. Then, there exists t € [T] such that the following is true for
hypothesis (we, 0t):

ly(d, H
VE Ve (sp) < %

Bilinear Regret Lemma

> Bilinear regret assumption and Optimism give an upper bound for sub-optimality.

Bilinear Regret Lemma

> Bilinear regret assumption and Optimism give an upper bound for sub-optimality.

» Define W; as the collective parameters
We = [we, —04]

N

Bilinear Regret Lemma

> Bilinear regret assumption and Optimism give an upper bound for sub-optimality.

» Define W; as the collective parameters
W = [Wt, —Gt}

> Define X; j as the expected “consistency feature” vector seen at level h under policy 7.

Xe,h = B, [9(sh, an), ¥ (sh+1)]

N

Bilinear Regret Lemma

> Bilinear regret assumption and Optimism give an upper bound for sub-optimality.

» Define W; as the collective parameters
We = [we, —04]

> Define X; j as the expected “consistency feature” vector seen at level h under policy 7.

Xe,h = B, [9(sh, an), ¥ (sh+1)]

Lemma (Bilinear Regret Lemma)

The following holds for all t € [T] w.h.p.:
H—1
V¥(s0) — VT (s0) < > [(We — WE, Xen)] -

h=0

N

Proof of Bilinear Regret Lemma

Proof:
V¥ (s0) — V™ (s0)

Proof of Bilinear Regret Lemma

Proof:
V*(s0) — V™*(s0)

< (0r,¢(s0)) — V™ (s0) (optimism)

Proof of Bilinear Regret Lemma
Proof:
V*(s0) — V™*(s0)
< (0r,¢(s0)) — V™ (s0) (optimism)
= (we, ¢(s0,a0)) — V™ (s0) (Equation (B))

Proof of Bilinear Regret Lemma
Proof:
V*(s0) = V™(s0)
< (0r,¢(s0)) — V™ (s0) (optimism)
= (wt, ¢(s0, 20)) — V"™ (s0)

(Equation (B))
= (we, ¢(s0, a0)) — [Z rh}

(definition of V7t)

Proof of Bilinear Regret Lemma

Proof:

V*(s0) —

<

V™(s0)

(0e,9(s0)) — V™ (s0)
(wt, #(s0,a0)) — V™(s0)

(we, #(s0, a0)) — [Z rh}

T

>
Il

1

0

Er, [(we, p(Sh, an)) — rn — (We, ¢(Shy1, ans1))]

(optimism)
(Equation (B))

(definition of V7t)

(telescoping sum)

Proof of Bilinear Regret Lemma

Proof:

V*(s0) —

<

V™(s0)

(0e,9(s0)) — V™ (s0)
(wt, #(s0,a0)) — V™(s0)

(we, #(s0, a0)) — [Z rh}

T

>

T

>

1

- o

0

Er, [(we, p(Sh, an)) — rn — (We, ¢(Shy1, ans1))]

Ex, [(we, ¢(sn, an)) — rn — (0t, ¥ (sht1))]

(optimism)
(Equation (B))

(definition of V7t)

(telescoping sum)

(Equation (B))

Proof of Bilinear Regret Lemma
Proof:

V*(s0) —
(0e, 9(

(wt, #(s0,a0)) —

(we, #(s0, a0)) — [Z rh}

<

T
—

>

T

>

T

>

o

- o

- ©

Er, [(we, p(Sh, an)) — rn — (We, ¢(Shy1, ans1))]

Ex, [(we, ¢(sn, an)) — rn — (0t, ¥ (sht1))]

V™(s0)

s0)) —

VT(s0)
V™(s0)

- V‘/*vxt,h>|

(optimism)
(Equation (B))

(definition of V7t)

(telescoping sum)

(Equation (B))

(by definition)

Proof of main lemma

> Bilinear regret assumption and Optimism give an upper bound on sub-optimality for all iterations t.

H—1
Ve — VT (sg) < > [(We = W5, Xe)| -
h=0

Proof of main lemma

> Bilinear regret assumption and Optimism give an upper bound on sub-optimality for all iterations t.

H—1
Ve — VT (sg) < > [(We = W5, Xe)| -
h=0

» Our goal then is to show existence of iteration t € [T] such that

H—1
Z [(W: — W*, X,)| is small
h=0

Proof of main lemma

> Bilinear regret assumption and Optimism give an upper bound on sub-optimality for all iterations t.

H—1
Ve — VT (sg) < > [(We = W5, Xe)| -
h=0

» Our goal then is to show existence of iteration t € [T] such that

H—1
Z [(W: — W*, X,)| is small
h=0

» To that end, we will show existence of iteration t € [T] such that for X, = A/ and
Seh = Sosh + Do XinX],, the following is true

We — WHlg, HX’*J’HE’,} is small for all h € [H]
; "

Proof of main lemma

» To that end, we will show existence of iteration t € [T] such that for 3., = Al and
Yeh=Zon + Zf;& X,-y;,XI.Th, the following is true

[We =W, Hvathfhl is small for all h € [H]|
’ t

Proof of main lemma

» To that end, we will show existence of iteration t € [T] such that for 3., = Al and
Yeh=2on+ Zf;& X,-yth.Th, the following is true

[We =W, HX“’HE’E is small for all h € [H]|
; .

» From our optimization constraint and uniform convergence, we get that for all time t

poly(d, H)
\/E

~dxSL generalization error

[We — Wiy, < for all h € [H]

Proof of main lemma

» To that end, we will show existence of iteration t € [T] such that for 3., = Al and
Yeh=Zon + Zf;& X,-y;,XI.Th, the following is true

[We =W, Hvathfhl is small for all h € [H]|
’ t

» From our optimization constraint and uniform convergence, we get that for all time t

poly(d, H)
\/E

~dxSL generalization error

[We — Wiy, < for all h € [H]

> From Elliptical Potential Lemma, there exists t € [T] such that

[Xehlss—1 = O(1) for all he [H]
t;h

Basically, we can write X 4 in terms of {X;_1 p,..., X1,n, Xo,n} with small coefficients.

	Part 0: Natural Assumptions
	RL with Linear Function Approximation

	Part 1: Why is RL hard?
	Baseline: Regression Chaining

	Part 2: Sample Efficiency
	Algorithmic Ideas in Theory

	Part 3: Computational Efficiency
	Different from sample efficiency
	Hard Instances

	Appendix

