Computational-Statistical Gaps in Reinforcement Learning

Talk By: Gaurav Mahajan (UCSD)

Progress of RL in practice (And It Ain't Cheap)

Robotics

Chip Design

Dota2

Prosthetics

Loon

Progress of RL in practice (And It Ain't Cheap)

Robotics

Chip Design

Dota2

Prosthetics

Loon

- Huge computational and statistical demands.
 - Computational: OpenAl Five trained for 10 months.
 - Statistical: Played 10,000 years of games.

Goal: design statistically and computationally "efficient" algorithms in RL

Framework for RL: MDPs and Trees

- Stochastic Transition S_{t+1} ~ T(S_t, A_t) Next state given current state and action
- Stochastic Reward $R_t \sim R(S_t, A_t)$

Next reward given current state and action

► Goal: Find a policy π which maximizes the expected sum of rewards $V(\pi) = \mathbb{E}\left[\sum_{t=0}^{H} R_t \mid \pi\right]$

Framework for RL: MDPs and Trees

- Stochastic Transition S_{t+1} ~ T(S_t, A_t) Next state given current state and action
- Stochastic Reward $R_t \sim R(S_t, A_t)$ Next reward given current state and action

- Deterministic Transition
- Stochastic Reward
 Each edge e is associated with a noisy reward Re.

- ► Goal: Find a policy π which maximizes the expected sum of rewards $V(\pi) = \mathbb{E}\left[\sum_{t=0}^{H} R_t \mid \pi\right]$
- ► Goal: Find a path π which maximizes the expected sum of rewards. $V(\pi) = \mathbb{E}\left[\sum_{e \in \pi}^{H} R_e\right]$,

This Talk: Interaction And Compute

near optimal policy $\pi: V^{\pi} > V^{} - \epsilon$

▶ MDPs with sample efficient algorithms (*P*_{data})

- MDPs with sample efficient algorithms (P_{data})
- ▶ MDPs with computationally efficient algorithms (*P_{compute}*)

- MDPs with sample efficient algorithms (P_{data})
- ▶ MDPs with computationally efficient algorithms (*P*_{compute})

Goal: characterize these classes of MDPs

Classical Theory: Dependence on S or A^H

Q1: How many samples/compute do we need to find a near optimal policy? for *S* states, *A* actions and *H* horizon

	0	1	2	3	4	5
0	Start		Wall			+1
1		Wall				-1
2		Wall			Wall	
3						

Classical Theory: Dependence on S or A^H

Q1: How many samples/compute do we need to find a near optimal policy? for S states, A actions and H horizon

- Theorem (Kearns & Singh '98; ..., Kearns, Mansour, & Ng '00) min(poly(S), A^H) samples/compute are sufficient and necessary to find a near optimal policy.
 - Algorithmic Ideas: Optimism + Dynamic Programming + Bonus
 - ► Hard Instance: Tree with reward only at a special leaf node.

With Assumptions: Independent of S.

But Dota2 has $S \subset \mathbb{R}^{16000}$, Horizon $H \approx 20000!!!$

Q2: Can we find a near optimal policy with no |S|, |A| dependence and **poly**(H, "complexity measure")?

Polynomial Sample Complexity

- Bellman Rank: [Jiang+ '17]
- Linear MDPs: [Wang & Yang '18; Jin+ '19]
- Linear Bellman Completion: [Zanette+ '19, Wang+ '2019]
- Block MDPs [Du+ '19]
- Factored MDPs [Sun+ '19]
- Kernelized Nonlinear Regulator [Kakade+ '20]
- FLAMBE / Feature Selection: [Agarwal+ '20]
- Linear Mixture MDPs: [Modi+ '20, Ayoub+ '20, Zhou+ '21]
- And more...

 Too strong. Unlikely to be necessary. Want to exploit understanding of neural networks.

- Too strong. Unlikely to be necessary. Want to exploit understanding of neural networks.
- Different proofs, algorithms. Structural property like VC dimension in supervised learning.

- Too strong. Unlikely to be necessary. Want to exploit understanding of neural networks.
- Different proofs, algorithms. Structural property like VC dimension in supervised learning.
- Few computational results. When can we design computationally efficient algorithms?

- Too strong. Unlikely to be necessary. Want to exploit understanding of neural networks.
- Different proofs, algorithms. Structural property like VC dimension in supervised learning.
- Few computational results. When can we design computationally efficient algorithms?

This Talk

- Introduce fundamental and natural setting: Linear Function Approximation.
 - Boundary of necessary vs sufficient
- Sample efficiency under Linear Function Approximation
 - Unifying Sufficient Structural Assumption for Sample Efficiency [DKLLMSW '21]
- Computational World: Different from Statistical World under Linear Function Approximation [KLLM '22]

Overview

Part 0: Natural Assumptions RL with Linear Function Approximation

Part 1: Why is RL hard? Baseline: Regression Chaining

Part 2: Sample Efficiency Algorithmic Ideas in Theory

Part 3: Computational Efficiency Different from sample efficiency Hard Instances $\frac{ {\sf Part \ 0: \ RL \ with \ Linear \ Function \ Approximation} }{{\sf natural \ assumptions \ in \ RL}}$

Linear Function Approximation

Fundamental in theory: A lot of algorithms try to learn optimal value functions

$$V^*(s) = \max_{\pi} \mathbb{E}\left[\sum_{t=0}^{H} R_t \mid s_0 = s, \pi\right], \quad Q^*(s, a) = \max_{\pi} \mathbb{E}\left[\sum_{t=0}^{H} R_t \mid s_0 = s, A_0 = a, \pi\right]$$

- Fundamental in practice: A lot of model free algorithms used in practice try to learn the optimal value functions
 - ▶ Trains a neural network to predict optimal V^* and Q^* functions

Representation Learning Learning Learning Learning Learn Learn optimal value functions linear in these features	
---	--

Linear Function Approximation: Linear $Q^* \& V^*$

Basic idea: Assume our neural networks learned "good" representations (features) $\phi(s, a), \psi(s) \in \mathbb{R}^d$ (where $d \ll \#$ states, #actions).

Linear Function Approximation

Linear Q^* : There exists unknown $w^* \in \mathbb{R}^d$ and known features $\phi : S \times A \to \mathbb{R}^d$ s.t.

 $Q^{\star}(s,a) = \langle w^{\star}, \phi(s,a) \rangle$

Linear V*: There exists unknown $\theta^* \in \mathbb{R}^d$ and known features $\psi: S \to \mathbb{R}^d$ s.t.

 $V^{\star}(s) = \langle \theta^{\star}, \psi(s) \rangle$

Lots of interesting variants: Linear Q^* , Linear V^* , Linear Q^* (reachable states).

Linear Function Approximation: Linear $Q^* \& V^*$

Basic idea: Assume our neural networks learned "good" representations (features) $\phi(s, a), \psi(s) \in \mathbb{R}^d$ (where $d \ll \#$ states, #actions).

Linear Function Approximation

Linear Q^* : There exists unknown $w^* \in \mathbb{R}^d$ and known features $\phi : S \times A \to \mathbb{R}^d$ s.t.

 $Q^{\star}(s,a) = \langle w^{\star}, \phi(s,a) \rangle$

Linear V*: There exists unknown $\theta^* \in \mathbb{R}^d$ and known features $\psi: S \to \mathbb{R}^d$ s.t.

 $V^{\star}(s) = \langle \theta^{\star}, \psi(s) \rangle$

- ▶ Lots of interesting variants: Linear Q^* , Linear V^* , Linear Q^* & V^* (reachable states).
- Weak Assumption. Implied by a lot of previous assumptions: Linear MDP, Linear Bellman Complete, ...
- Counterpart in supervised learning is well understood
 - What's efficiently possible in RL compared to supervised learning.

Part 1: Why is RL hard? Connections to Bandits and Trees

Why is RL hard: From Bandits Theory

Recall Linear Q* means

 $Q^*(s, a) = \langle w^*, \phi(s, a)
angle$ where $\phi(s, a) \in \mathbb{R}^d$.

- Approach: Learn the linear function $Q^*(s, a)$ uniformally over all state action pairs!
 - ▶ Need something stronger than regression to learn w^* from estimates of the value function on different state action pairs $\{\hat{Q}^*(s, a)\}_{s,a}$

Why is RL hard: From Bandits Theory

▶ Proposition (John '48) There exists O(d) state-action pairs $\{(s_1, a_1), (s_2, a_2), \dots, (s_d, a_d)\}$ such that every $\phi(s, a)$ can be written in terms of $\phi(s_1, a_1), \dots, \phi(s_d, a_d)$ with small coefficients.

$$\phi(s, a) = \sum_i lpha_i \phi(s_i, a_i)$$
 and $\|lpha\|_2 \leq \sqrt{a}$

▶ This implies $Q^*(s, a)$ can be written in terms of $\{Q^*(s_i, a_i)\}$ with small coefficients

$$\phi(\mathbf{s}, \mathbf{a}) = \sum_{i} \alpha_{i} \phi(\mathbf{s}_{i}, \mathbf{a}_{i}) \implies Q^{*}(\mathbf{s}, \mathbf{a}) = \sum_{i} \alpha_{i} Q^{*}(\mathbf{s}_{i}, \mathbf{a}_{i})$$

- ▶ Using good estimates $\hat{Q}(s_i, a_i)$ on these "landmark" state action pairs, we can build good estimates $\hat{Q}(s, a) = \sum_i \alpha_i \hat{Q}(s_i, a_i)$ for any state-action pair (s, a).
- How much does the error grow?

$$|Q^*(s, a) - \hat{Q}(s, a)| \le \|\alpha\|_1 \max_i |Q^*(s_i, a_i) - \hat{Q}(s_i, a_i)| \le O(d) \max_i |Q^*(s_i, a_i) - \hat{Q}(s_i, a_i)|$$

We now have a different "landmark" set (John's basis) J_h for every level h.

We now have a different "landmark" set (John's basis) J_h for every level h.

Error for John's basis at last layer:

$$\max_{(s,a)\in J_H} \left| Q^*(s,a) - \hat{Q}(s,a) \right| \leq O(\epsilon)$$

We now have a different "landmark" set (John's basis) J_h for every level h.

Error for John's basis at last layer:

$$\max_{(s,a)\in J_{\mathcal{H}}} \left| Q^*(s,a) - \hat{Q}(s,a) \right| \leq \mathit{O}(\epsilon)$$

• Error for every (s_H, a) at last level:

$$\left| Q^*(s_H, a) - \hat{Q}(s_H, a) \right| \le \| \alpha \|_1 \epsilon \le O(d\epsilon)$$

We now have a different "landmark" set (John's basis) J_h for every level h.

Error for John's basis at last layer:

$$\max_{(s,a)\in J_{\mathcal{H}}} \left| Q^*(s,a) - \hat{Q}(s,a) \right| \leq \mathit{O}(\epsilon)$$

• Error for every (s_H, a) at last level:

$$\left| \mathcal{Q}^*(\mathbf{s}_{H}, \mathbf{a}) - \hat{\mathcal{Q}}(\mathbf{s}_{H}, \mathbf{a}) \right| \leq \| \alpha \|_1 \epsilon \leq \mathcal{O}(d\epsilon)$$

Error for John's basis at second last layer:

$$\max_{(s,a)\in J_{H-1}} \left| Q^*(s,a) - \hat{Q}(s,a) \right| \leq \mathbb{E}_{s_H \sim T(s,a)} \left[\left| V^*(s_H) - \hat{V}(s_H) \right| \right] \leq O(d\epsilon)$$

We now have a different "landmark" set (John's basis) J_h for every level h.

Error for John's basis at last layer:

$$\max_{(s,a)\in J_{\mathcal{H}}} \left| Q^*(s,a) - \hat{Q}(s,a) \right| \leq \mathit{O}(\epsilon)$$

• Error for every (s_H, a) at last level:

$$\left| \mathcal{Q}^*(\mathbf{s}_{H}, \mathbf{a}) - \hat{\mathcal{Q}}(\mathbf{s}_{H}, \mathbf{a}) \right| \leq \| \alpha \|_1 \epsilon \leq \mathcal{O}(\mathbf{d}\epsilon)$$

Error for John's basis at second last layer:

$$\max_{(s,a)\in J_{H-1}} \left| Q^*(s,a) - \hat{Q}(s,a) \right| \leq \mathbb{E}_{s_H \sim T(s,a)} \left[\left| V^*(s_H) - \hat{V}(s_H) \right| \right] \leq O(d\epsilon)$$

• Error for every (s_{H-1}, a) at second last level:

$$|Q^*(s_{H-1}, a) - \hat{Q}(s_{H-1}, a)| \le \|\alpha\|_1 d\epsilon \le O(d^2\epsilon)$$

We now have a different "landmark" set (John's basis) J_h for every level h.

Error for John's basis at last layer:

$$\max_{(s,a)\in J_{\mathcal{H}}} \left| Q^*(s,a) - \hat{Q}(s,a) \right| \leq \mathit{O}(\epsilon)$$

Error for every (s_H, a) at last level:

$$\left| \mathcal{Q}^*(\mathbf{s}_{H}, \mathbf{a}) - \hat{\mathcal{Q}}(\mathbf{s}_{H}, \mathbf{a}) \right| \leq \| \alpha \|_1 \epsilon \leq \mathcal{O}(\mathbf{d}\epsilon)$$

Error for John's basis at second last layer:

$$\max_{(s,a)\in J_{H-1}} \left| Q^*(s,a) - \hat{Q}(s,a) \right| \leq \mathbb{E}_{s_H \sim T(s,a)} \left[\left| V^*(s_H) - \hat{V}(s_H) \right| \right] \leq O(d\epsilon)$$

• Error for every (s_{H-1}, a) at second last level:

$$|\boldsymbol{Q}^*(\boldsymbol{s}_{H-1},\boldsymbol{a}) - \hat{\boldsymbol{Q}}(\boldsymbol{s}_{H-1},\boldsymbol{a})| \le \|\boldsymbol{\alpha}\|_1 d\epsilon \le \boldsymbol{O}(d^2\epsilon)$$

Issue: The error grows by a factor of *d* every level. Leading to d^H sample and computational complexity. Can be improved to $d^{\sqrt{H}}$. Part II: Sample Efficiency Algorithmic Ideas

Goal: Improve upon the $O(d^{\sqrt{H}})$ sample complexity of regression chaining.

Q: We do not observe Q^* and V^* . Then, what do we observe?

A: Local Consistency!

$$Q^{*}(s, a) = E_{r \sim R(s, a)}[r] + \mathbb{E}_{s' \sim T(s, a)}[V^{*}(s')]$$

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
(B)

Q: We do not observe Q^* and V^* . Then, what do we observe?

A: Local Consistency!

$$Q^{*}(s,a) = E_{r \sim R(s,a)}[r] + \mathbb{E}_{s' \sim T(s,a)}[V^{*}(s')]$$
(A)

$$V^*(s) = \max_{a} Q^*(s, a) \tag{B}$$

▶ Recall Linear Q^* and Linear V^* means

 $Q^*(s,a) = \langle w^*, \phi(s,a)
angle$ and $V^*(s) = \langle heta^*, \psi(s)
angle$

Q: We do not observe Q^* and V^* . Then, what do we observe?

A: Local Consistency!

$$Q^{*}(s,a) = E_{r \sim R(s,a)}[r] + \mathbb{E}_{s' \sim T(s,a)}[V^{*}(s')]$$
(A)

$$V^*(s) = \max_{a} Q^*(s, a) \tag{B}$$

Recall Linear Q* and Linear V* means

$$Q^*(s,a) = \langle w^*, \phi(s,a)
angle$$
 and $V^*(s) = \langle heta^*, \psi(s)
angle$

► Equation (A) is a Linear Constraint Equation (A) can be enforced by estimating "consistency feature" vector $[\phi(s, a), -\mathbb{E}_T(\psi(s')), -\mathbb{E}_R(r)]$. $\langle w^*, \phi(s, a) \rangle - \langle 1, \mathbb{E}_{r \sim R(s,a)}[r] \rangle - \langle \theta^*, \mathbb{E}_{s' \sim T(s,a)}[\psi(s')] \rangle = 0$ $\langle [w^*, \theta^*, 1], [\phi(s, a), -\mathbb{E}_T(\psi(s')), -\mathbb{E}_R(r)] \rangle = 0$

We should create John's basis for these "consistency feature" vectors.

Q: We do not observe Q^* and V^* . Then, what do we observe?

A: Local Consistency!

$$Q^{*}(s,a) = E_{r \sim R(s,a)}[r] + \mathbb{E}_{s' \sim T(s,a)}[V^{*}(s')]$$
(A)

$$V^*(s) = \max_{a} Q^*(s, a) \tag{B}$$

▶ Recall Linear Q^* and Linear V^* means

$$Q^*(s,a) = \langle w^*, \phi(s,a)
angle$$
 and $V^*(s) = \langle heta^*, \psi(s)
angle$

Equation (A) is a Linear Constraint

Equation (A) can be enforced by estimating "consistency feature" vector $[\phi(s, a), -\mathbb{E}_T(\psi(s')), -\mathbb{E}_R(r)]$.

$$\langle \boldsymbol{w}^*, \boldsymbol{\phi}(\boldsymbol{s}, \boldsymbol{a}) \rangle - \langle 1, \boldsymbol{E}_{\boldsymbol{r} \sim \boldsymbol{R}(\boldsymbol{s}, \boldsymbol{a})}[\boldsymbol{r}] \rangle - \langle \boldsymbol{\theta}^*, \mathbb{E}_{\boldsymbol{s}' \sim \boldsymbol{T}(\boldsymbol{s}, \boldsymbol{a})}[\boldsymbol{\psi}(\boldsymbol{s}')] \rangle = 0 \\ \langle [\boldsymbol{w}^*, \boldsymbol{\theta}^*, 1], [\boldsymbol{\phi}(\boldsymbol{s}, \boldsymbol{a}), -\mathbb{E}_{\boldsymbol{T}}(\boldsymbol{\psi}(\boldsymbol{s}')), -\mathbb{E}_{\boldsymbol{R}}(\boldsymbol{r})] \rangle = 0$$

We should create John's basis for these "consistency feature" vectors.

Enforcing Equation (B) is free!.

Enforcing Equation (B) does *not* require any interaction with transition and rewards function.

$$V^*(s) = \langle \theta^*, \psi(s) \rangle = \max_a \langle w^*, \phi(s, a) \rangle = \max_a Q^*(s, a)$$

Polynomial Sample Complexity under Linear Function Approximation

Theorem (Du, Kakade, Lee, Lovett, M., Sun, Wang '21)

- Bilinear class: a special class of MDPs. set of MDPs where (a generalization of) Equation (A) is a low degree polynomial.
- All "named" models are bilinear classes.
- Sample efficient algorithm (poly(d, H)) for all bilinear classes.
- Linear $Q^* \& V^*$ is a bilinear class.
 - ▶ Need only poly(d, H) samples when both Q^* and V^* are linear.
- For other variants, enforce Equation (A) by multiplying the constraint for all actions. [Weisz, Amortila, Janzer, Abbasi-Yadkori, Jiang, Szepesvári '21]
- Phase transition happens when only Q* or V* is linear. (series of works [Weisz, Amortila, Szepesvári '21; ...; Wang, Wang, Kakade '21])

	A = 2	$ \mathbf{A} = \Omega(\mathbf{d}^{1/4})$	$ A = \exp(d)$
linear Q^* and V^*	1	✓	1
linear Q^* and V^* (reachable)	1	×	X
linear Q*	1	X	X
linear V^*	1	X	X

Simple Global Algorithm: BiLin-UCB

First we remove candidates which don't satisfy Equation (B) so only need to satisfy Equation (A).

Algorithm 1: BiLin-UCB

1 Parameters number of iterations *T*, batch size *m*, confidence radius *R* 2 Initialize constraint $\sigma : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ as $\sigma(w, \theta) = 0$ 3 for *iteration* t = 0, 1, ..., T - 1 do 4 Find the optimistic (w_t, θ_t) : $(w_t, \theta_t) := \arg\max_{(w, \theta)} \langle \theta, \psi(s_0) \rangle$ subject to $\sigma^2(w, \theta) \leq R$ 5 Sample *m* trajectories using π_t and create a batch dataset of size *mH*: $D = \{(r_h, s_h, a_h, s_{h+1}) \in \text{trajectories}\}$ 6 Update the constraint $\sigma^2(\cdot)$ $\sigma^2(w, \theta) \leftarrow \sigma^2(w, \theta) + \mathbb{E}_D[\langle w, \phi(s_h, a_h) \rangle - r_h - \langle \theta, \psi(s_{h+1}) \rangle]^2$

7 return: the best π_t found until now.

Part III: Computational Complexity of RL Hard Instances

Goal: Improve upon the $O(d^{\sqrt{H}})$ computational complexity of regression chaining.

Global vs Local Algorithm

► A global algorithm exists! Computationally inefficient.

- **•** Regression Chaining (Du, Lee, M., Wang '19) Takes exp(H) time. Can be improved to $exp(\sqrt{H})$.
- BiLin-UCB (Du, Kakade, Lee, Lovett, M., Sun, Wang '21): Loops over all linear functions!
- ► TensorPlan (Weisz, Szepesvari, Gyorgy '21) Takes **exp**(*d*) time.

▶ Open Question: Can we design polynomial time algorithms under linear function approximation?

Computational-Statistical Gap

Theorem (Kane, Liu, Lovett, M., 2022)

Unless NP = RP, no polynomial time algorithm exists for RL with linear function approximation.

	A = 2	$ A = \Omega(d^{1/4})$	$ A = \exp(d)$
linear Q^* and V^*	X	×	X
linear Q^* and V^* (reachable)	X	×	X
linear Q*	X	×	×
linear V^*	×	×	×

- Hardness for all the variants of linear function approximation even in the easiest case: deterministic transition + 2 actions.
- ▶ Unlike classical theory, computational and statistical worlds are really different.
- Reinforcement vs Supervised Learning.
 - Learning features which allow target functions to be linear are not enough.

Reduction: 3-SAT to MDP with Linear Q^* and V^*

Complexity problem 3-SAT

• CNF Formula: $(x_1 \lor x_2 \lor x_3) \land (\bar{x}_1 \lor x_2 \lor x_3) \land (\bar{x}_1 \lor \bar{x}_3 \lor x_4)$

Satisfying Assignment: (1, 1, -1, 1)

- ▶ We need to embed a hard problem, 3SAT, in RL.
- Let's start with non-constant number of actions.

- ▶ We need to embed a hard problem, 3SAT, in RL.
- Let's start with non-constant number of actions.

$$(-1, -1, -1, \dots, -1)$$

• Every state is some assignment to 3SAT variables.

- ▶ We need to embed a hard problem, 3SAT, in RL.
- Let's start with non-constant number of actions.

- Every state is some assignment to 3SAT variables.
- \blacktriangleright v actions correspond to flipping the assignment for each of the v variables.

- We need to embed a hard problem, 3SAT, in RL.
- Let's start with non-constant number of actions.

- Every state is some assignment to 3SAT variables.
- v actions correspond to flipping the assignment for each of the v variables.
- Reward = 1 only when you reach some fixed satisfying assignment w^* . Otherwise 0.

- For horizon H = v, Solving RL \Rightarrow solving 3SAT.
- ▶ Issue 1: We can not write Q^* or V^* linearly.

Value of assignment w at level I (here $D(w, w^*)$ is hamming distance between w and w^*)

$$\mathcal{W}^*(\textit{w},\textit{l}) = egin{cases} 1 & ext{if } \mathcal{D}(\textit{w},\textit{w}^*) < \mathcal{H} - \mathcal{H} \ 0 & ext{otherwise} \end{cases}$$

Issue 2: The rewards are deterministic.

There exists polynomial time algorithms when rewards are deterministic (Gaussian Elimination).

Let's add randomness. Bernoulli reward. Expected reward on reaching w at level I

$$\mathbb{E}[R(w, l)] = \begin{cases} 1 - \frac{l+D(w, w^*)}{H+v} & \text{if } l = H \text{ or } w = w^* \\ 0 & \text{otherwise} \end{cases}$$

We can show in this case the optimal policy is to go towards w* as fast as possible. Therefore, value of assignment w at level I

$$V^*(w, l) = 1 - \frac{l + D(w, w^*)}{H + v}$$

Since hamming distance is linear in w and w^* , V^* is also linear in w and w^*

Let's add randomness. Bernoulli reward. Expected reward on reaching w at level I

$$\mathbb{E}[R(w, l)] = \begin{cases} 1 - \frac{l+D(w, w^*)}{H+v} & \text{if } l = H \text{ or } w = w^* \\ 0 & \text{otherwise} \end{cases}$$

We can show in this case the optimal policy is to go towards w* as fast as possible. Therefore, value of assignment w at level I

$$V^*(w, l) = 1 - \frac{l + D(w, w^*)}{H + v}$$

Since hamming distance is linear in w and w^* , V^* is also linear in w and w^*

New issue: We leak a lot of reward information at the last layer. Can not simulate $D(w, w^*)$ efficiently. This can be fixed but a bit technical.

Expected reward on reaching w at level I

$$\mathbb{E}[R(w, l)] = \begin{cases} \left(1 - \frac{l+D(w, w^*)}{H+v}\right)^r & \text{if } l = H \text{ or } w = w^*\\ 0 & \text{otherwise} \end{cases}$$

Same as before the optimal policy is to go towards w* as fast as possible. Therefore, value of assignment w at level I

$$V^*(w,l) = \left(1 - \frac{l + D(w,w^*)}{H + v}\right)'$$

 V^* is a polynomial of degree *r* in *w* and *w*^{*}. In terms of its monomials, V^* is linear in $d = v^r$ dimensional features.

Consider a polynomial time algorithm for RL. Since, our dimension *d* and horizon *H* are both $d = H = v^r$, the algorithm runs in poly(v^r) time.

But the expected reward at the last layer is at most

$$\left(1-\frac{H}{H+v}\right)^r\in O(v^{-r^2})$$

- Therefore, any polytime algorithm with high probability only sees 0 at the last layer.
- We can simulate this algorithm efficiently by always returning 0 on the last layer (and only slightly decreasing the success probability)!

- ▶ There always exists a variable we can flip to get closer to the optimal solution.
- The three actions available are the variables in the unsatisfied clause (one such clause exists, because current assignment is not satisfying assignment.)

Consider the following CNF formula

- ▶ There always exists a variable we can flip to get closer to the optimal solution.
- The three actions available are the variables in the unsatisfied clause (one such clause exists, because current assignment is not satisfying assignment.)

Consider the following CNF formula

 $(x_1 \lor x_2 \lor x_3) \land (\bar{x}_1 \lor x_2 \lor x_3) \land (\bar{x}_1 \lor x_3 \lor x_4) \land (x_1 \lor x_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_2 \lor \bar{x}_3) \land (\bar{x}_3 \lor \bar{x}_3 \lor \bar{x}_3) \land (x_1 \lor x_1 \lor x_1).$

(-1, -1, -1, -1)

- ▶ There always exists a variable we can flip to get closer to the optimal solution.
- The three actions available are the variables in the unsatisfied clause (one such clause exists, because current assignment is not satisfying assignment.)

Consider the following CNF formula

 $(x_1 \lor x_2 \lor x_3) \land (\bar{x}_1 \lor x_2 \lor x_3) \land (\bar{x}_1 \lor x_3 \lor x_4) \land (x_1 \lor x_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_2 \lor \bar{x}_3) \land (\bar{x}_3 \lor \bar{x}_3 \lor \bar{x}_3) \land (x_1 \lor x_1 \lor x_1).$

 $_{(-1,\,-1,\,-1,\,-1)}^{x_{1}\,\vee\,x_{2}\,\vee\,x_{3}}\bigcirc$

- ▶ There always exists a variable we can flip to get closer to the optimal solution.
- The three actions available are the variables in the unsatisfied clause (one such clause exists, because current assignment is not satisfying assignment.)

Consider the following CNF formula

- ▶ There always exists a variable we can flip to get closer to the optimal solution.
- The three actions available are the variables in the unsatisfied clause (one such clause exists, because current assignment is not satisfying assignment.)

Consider the following CNF formula

- ▶ There always exists a variable we can flip to get closer to the optimal solution.
- The three actions available are the variables in the unsatisfied clause (one such clause exists, because current assignment is not satisfying assignment.)

Consider the following CNF formula

▶ We replace the three actions by 2 actions, grouping any two actions together.

What have we learned?

- Computational-Statistical Gap in RL with Linear Function Approximation.
 - Simple sample efficient algorithm works for all known "named" models.
 - Novel construction exposing computational hardness.

Reinforcement vs Supervised Learning.

- Learning features which allow target functions to be linear are not enough.
- We need more assumptions for RL.

Tight characterization of computational complexity of RL.

- **b** Best Upper Bounds: Takes $\exp(\sqrt{H}\log d)$ or $\exp(d)$ time.
- Best Lower Bound: No polynomial time algorithm exists.
- Can we close this gap? (maybe there exist a quasi-polynomial time algorithm)

Thanks!

Joint work with:

Jason Lee

Sihan Liu

Wen Sun

Ruosong Wang

Proof intuition

The proof follows from this lemma about existence of high quality policy.

Lemma (Existence of high quality policy)

Suppose we run the algorithm for $T \approx d$ iterations. Then, there exists $t \in [T]$ such that the following is true for hypothesis (w_t, θ_t) :

$$V^{\star} - V^{\pi_t}(s_0) \leq rac{\mathsf{poly}(d,H)}{\sqrt{m}}$$

Bilinear regret assumption and Optimism give an upper bound for sub-optimality.

- Bilinear regret assumption and Optimism give an upper bound for sub-optimality.
- Define W_t as the collective parameters

$$W_t = [w_t, -\theta_t]$$

- Bilinear regret assumption and Optimism give an upper bound for sub-optimality.
- \blacktriangleright Define W_t as the collective parameters

$$W_t = [w_t, -\theta_t]$$

b Define $X_{t,h}$ as the expected "consistency feature" vector seen at level h under policy π_t .

$$X_{t,h} = \mathbb{E}_{\pi_t} \left[\phi(\mathbf{s}_h, \mathbf{a}_h), \psi(\mathbf{s}_{h+1}) \right]$$

- Bilinear regret assumption and Optimism give an upper bound for sub-optimality.
- Define W_t as the collective parameters

$$W_t = [w_t, -\theta_t]$$

> Define $X_{t,h}$ as the expected "consistency feature" vector seen at level h under policy π_t .

$$X_{t,h} = \mathbb{E}_{\pi_t} \left[\phi(\mathbf{s}_h, \mathbf{a}_h), \psi(\mathbf{s}_{h+1}) \right]$$

Lemma (Bilinear Regret Lemma)

The following holds for all $t \in [T]$ w.h.p.:

$$\mathcal{W}^{\star}(s_0) - \mathcal{W}^{\pi_t}(s_0) \leq \sum_{h=0}^{H-1} \left| \langle \mathcal{W}_t - \mathcal{W}_t^{\star}, X_{t,h}
angle
ight| \, .$$

Proof:

 $V^{\star}(s_0) - V^{\pi_t}(s_0)$

Proof:

 $V^{\star}(s_0) - V^{\pi_t}(s_0)$ $\leq \langle \theta_t, \psi(s_0) \rangle - V^{\pi_t}(s_0)$

(optimism)

Proof:

 $\begin{aligned} & \boldsymbol{V}^{\star}(\boldsymbol{s}_{0}) - \boldsymbol{V}^{\pi_{t}}(\boldsymbol{s}_{0}) \\ & \leq \langle \boldsymbol{\theta}_{t}, \boldsymbol{\psi}(\boldsymbol{s}_{0}) \rangle - \boldsymbol{V}^{\pi_{t}}(\boldsymbol{s}_{0}) \\ & = \langle \boldsymbol{w}_{t}, \boldsymbol{\phi}(\boldsymbol{s}_{0}, \boldsymbol{a}_{0}) \rangle - \boldsymbol{V}^{\pi_{t}}(\boldsymbol{s}_{0}) \end{aligned}$

(optimism) (Equation (B))

Proof:

$$V^{\star}(s_{0}) - V^{\pi_{t}}(s_{0})$$

$$\leq \langle \theta_{t}, \psi(s_{0}) \rangle - V^{\pi_{t}}(s_{0})$$

$$= \langle w_{t}, \phi(s_{0}, a_{0}) \rangle - V^{\pi_{t}}(s_{0})$$

$$= \langle w_{t}, \phi(s_{0}, a_{0}) \rangle - \mathbb{E} \left[\sum_{h=0}^{H} r_{h} \right]$$

(optimism) (Equation (B))

(definition of V^{π_t})

Proof:

$$V^{\star}(s_{0}) - V^{\pi_{t}}(s_{0})$$

$$\leq \langle \theta_{t}, \psi(s_{0}) \rangle - V^{\pi_{t}}(s_{0}) \qquad (optimism)$$

$$= \langle w_{t}, \phi(s_{0}, a_{0}) \rangle - V^{\pi_{t}}(s_{0}) \qquad (Equation (B))$$

$$= \langle w_{t}, \phi(s_{0}, a_{0}) \rangle - \mathbb{E} \left[\sum_{h=0}^{H} r_{h} \right] \qquad (definition of V^{\pi_{t}})$$

$$= \sum_{h=0}^{H-1} \mathbb{E}_{\pi_{t}} \left[\langle w_{t}, \phi(s_{h}, a_{h}) \rangle - r_{h} - \langle w_{t}, \phi(s_{h+1}, a_{h+1}) \rangle \right] \qquad (telescoping sum)$$

Proof:

$$V^{\star}(s_{0}) - V^{\pi_{t}}(s_{0})$$

$$\leq \langle \theta_{t}, \psi(s_{0}) \rangle - V^{\pi_{t}}(s_{0}) \qquad (optimism)$$

$$= \langle w_{t}, \phi(s_{0}, a_{0}) \rangle - V^{\pi_{t}}(s_{0}) \qquad (Equation (B))$$

$$= \langle w_{t}, \phi(s_{0}, a_{0}) \rangle - \mathbb{E} \left[\sum_{h=0}^{H} r_{h} \right] \qquad (definition of V^{\pi_{t}})$$

$$= \sum_{h=0}^{H-1} \mathbb{E}_{\pi_{t}} [\langle w_{t}, \phi(s_{h}, a_{h}) \rangle - r_{h} - \langle w_{t}, \phi(s_{h+1}, a_{h+1}) \rangle] \qquad (telescoping sum)$$

$$= \sum_{h=0}^{H-1} \mathbb{E}_{\pi_{t}} [\langle w_{t}, \phi(s_{h}, a_{h}) \rangle - r_{h} - \langle \theta_{t}, \psi(s_{h+1}) \rangle] \qquad (Equation (B))$$

Proof:

$$V^{*}(s_{0}) - V^{\pi_{t}}(s_{0})$$

$$\leq \langle \theta_{t}, \psi(s_{0}) \rangle - V^{\pi_{t}}(s_{0}) \qquad (optimism)$$

$$= \langle w_{t}, \phi(s_{0}, a_{0}) \rangle - V^{\pi_{t}}(s_{0}) \qquad (Equation (B))$$

$$= \langle w_{t}, \phi(s_{0}, a_{0}) \rangle - \mathbb{E} \left[\sum_{h=0}^{H} r_{h} \right] \qquad (definition of V^{\pi_{t}})$$

$$= \sum_{h=0}^{H-1} \mathbb{E}_{\pi_{t}} \left[\langle w_{t}, \phi(s_{h}, a_{h}) \rangle - r_{h} - \langle w_{t}, \phi(s_{h+1}, a_{h+1}) \rangle \right] \qquad (telescoping sum)$$

$$= \sum_{h=0}^{H-1} \mathbb{E}_{\pi_{t}} \left[\langle w_{t}, \phi(s_{h}, a_{h}) \rangle - r_{h} - \langle \theta_{t}, \psi(s_{h+1}) \rangle \right] \qquad (Equation (B))$$

$$= \sum_{h=0}^{H-1} \left| \langle W_{t} - W^{*}, X_{t,h} \rangle \right| \qquad (by definition)$$

Bilinear regret assumption and **Optimism** give an upper bound on sub-optimality for all iterations *t*.

$$\mathcal{V}^{\star} - \mathcal{V}^{\pi_t}(\mathbf{s}_0) \leq \sum_{h=0}^{H-1} \left| \langle \mathcal{W}_t - \mathcal{W}^{\star}, X_{t,h}
angle
ight| \,.$$

Bilinear regret assumption and Optimism give an upper bound on sub-optimality for all iterations t.

$$\mathcal{V}^{\star} - \mathcal{V}^{\pi_t}(\mathbf{s}_0) \leq \sum_{h=0}^{H-1} \left| \langle \mathcal{W}_t - \mathcal{W}^{\star}, \mathcal{X}_{t,h}
angle
ight| \,.$$

• Our goal then is to show existence of iteration $t \in [T]$ such that

$$\sum_{h=0}^{H-1} \left| \langle W_t - W^*, X_{t,h}
angle
ight|$$
 is small

Bilinear regret assumption and Optimism give an upper bound on sub-optimality for all iterations t.

$$V^{\star} - V^{\pi_t}(s_0) \leq \sum_{h=0}^{H-1} \left| \langle W_t - W^{\star}, X_{t,h}
angle
ight| \, .$$

• Our goal then is to show existence of iteration $t \in [T]$ such that

$$\sum_{h=0}^{H-1} \left| \langle \mathcal{W}_t - \mathcal{W}^*, X_{t,h}
angle
ight| \hspace{0.5cm} ext{ is small }$$

▶ To that end, we will show existence of iteration $t \in [T]$ such that for $\Sigma_{0;h} = \lambda I$ and $\Sigma_{t;h} = \Sigma_{0;h} + \sum_{i=0}^{t-1} X_{i,h} X_{i,h}^{-1}$, the following is true

$$\left\| \mathcal{W}_t - \mathcal{W}^*
ight\|_{\Sigma_{t;h}} = \left\| X_{t,h}
ight\|_{\Sigma_{t;h}^{-1}}$$
 is small for all $h \in [H]$

► To that end, we will show existence of iteration $t \in [T]$ such that for $\Sigma_{0;h} = \lambda I$ and $\Sigma_{t;h} = \Sigma_{0;h} + \sum_{i=0}^{t-1} X_{i,h} X_{i,h}^{\top}$, the following is true

 $\| \mathcal{W}_t - \mathcal{W}^* \|_{\Sigma_{t;h}} = \| X_{t,h} \|_{\Sigma_{t;h}^{-1}}$ is small for all $h \in [H]$

▶ To that end, we will show existence of iteration $t \in [T]$ such that for $\Sigma_{0;h} = \lambda I$ and $\Sigma_{t;h} = \Sigma_{0;h} + \sum_{t=1}^{t-1} X_{i,h} X_{i,h}^{T}$, the following is true

 $\|W_t - W^*\|_{\Sigma_{t;h}} = \|X_{t,h}\|_{\Sigma_{t;h}^{-1}}$ is small for all $h \in [H]$

From our optimization constraint and uniform convergence, we get that for all time t

$$\|W_t - W^*\|_{\Sigma_{t;h}} \leq \underbrace{\frac{\mathsf{poly}(d, H)}{\sqrt{m}}}_{\approx d \times \mathsf{SL generalization error}} \text{ for all } h \in [H]$$

► To that end, we will show existence of iteration $t \in [T]$ such that for $\Sigma_{0;h} = \lambda I$ and $\Sigma_{t;h} = \Sigma_{0;h} + \sum_{i=0}^{t-1} X_{i,h} X_{i,h}^{\top}$, the following is true

 $\|W_t - W^*\|_{\Sigma_{t;h}} \quad \|X_{t,h}\|_{\Sigma_{t;h}^{-1}}$ is small for all $h \in [H]$

From our optimization constraint and uniform convergence, we get that for all time t

$$\|W_t - W^*\|_{\Sigma_{t;h}} \leq \underbrace{\frac{\mathsf{poly}(d, H)}{\sqrt{m}}}_{\approx d \times \mathsf{SL \ generalization \ error}} \text{ for all } h \in [H]$$

From Elliptical Potential Lemma, there exists $t \in [T]$ such that

 $\left\|X_{t,h}\right\|_{\Sigma_{t,h}^{-1}} = O(1)$ for all $h \in [H]$

Basically, we can write $X_{t,h}$ in terms of $\{X_{t-1,h}, \ldots, X_{1,h}, X_{0,h}\}$ with small coefficients.