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Progress of RL in practice (And It Ain’t Cheap)

Robotics Chip Design Dota2

Prosthetics Loon Search

▶ Huge computational and statistical demands.
▶ Computational: OpenAI Five trained for 10 months.
▶ Statistical: Played 10,000 years of games.

Goal: design statistically and computationally “efficient” algorithms in RL
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Framework for RL: MDPs and Trees

Environment Agent

At

St+1,Rt

0.2

1 0.6

0.5
0.1

0.4 0.9

▶ Stochastic Transition St+1 ∼ T(St,At)
Next state given current state and action

▶ Stochastic Reward Rt ∼ R(St,At)
Next reward given current state and action

▶ Deterministic Transition

▶ Stochastic Reward
Each edge e is associated with a noisy reward Re.

▶ Goal: Find a policy π which maximizes the
expected sum of rewards V(π) = E

[∑H
t=0 Rt

∣∣∣ π]

▶ Goal: Find a path π which maximizes the
expected sum of rewards. V(π) = E

[∑H
e∈π Re

]
,
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This Talk: Interaction And Compute

Environment

CPUs and GPUs

Interaction

Statistical: amount of interaction with the environment
to find near optimal policy

Computational: amount of compute
to find near optimal policy

*near optimal policy π: Vπ > V∗ − ϵ

Compute
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This Talk: Goal

All MDPs

Pdata

Pcompute

▶ MDPs with sample efficient algorithms (Pdata)
▶ MDPs with computationally efficient algorithms (Pcompute)

Goal: characterize these classes of MDPs
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Classical Theory: Dependence on S or AH

Q1: How many samples/compute do we need to find a near optimal policy?
for S states, A actions and H horizon

▶ Theorem (Kearns & Singh ’98; . . ., Kearns, Mansour, & Ng ’00)
min(poly(S),AH) samples/compute are sufficient and necessary to find a near optimal policy.
▶ Algorithmic Ideas: Optimism + Dynamic Programming + Bonus
▶ Hard Instance: Tree with reward only at a special leaf node.
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With Assumptions: Independent of S.

But Dota2 has S ⊂ R16000, Horizon H ≈ 20000!!!
Q2: Can we find a near optimal policy with no |S|, |A| dependence

and poly(H, “complexity measure”)?

▶ Polynomial Sample Complexity
▶ Bellman Rank: [Jiang+ ‘17]
▶ Linear MDPs: [Wang & Yang ’18; Jin+ ’19]
▶ Linear Bellman Completion: [Zanette+ ’19, Wang+ ’2019]
▶ Block MDPs [Du+ ’19]
▶ Factored MDPs [Sun+ ’19]
▶ Kernelized Nonlinear Regulator [Kakade+ ’20]
▶ FLAMBE / Feature Selection: [Agarwal+ ’20]
▶ Linear Mixture MDPs: [Modi+ ’20, Ayoub+ ’20, Zhou+ ’21]
▶ And more. . .
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This Talk

▶ Too strong. Unlikely to be necessary.
Want to exploit understanding of neural
networks.

▶ Different proofs, algorithms. Structural
property like VC dimension in supervised
learning.

▶ Few computational results. When can
we design computationally efficient
algorithms?

All MDPs

Linear MDPs
Linear Mixture Models

Linear Bellman Complete
FLAMBE

Kernelized Nonlinear Regulator
Block MDPs

...
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This Talk

▶ Too strong. Unlikely to be necessary.
Want to exploit understanding of neural
networks.

▶ Different proofs, algorithms. Structural
property like VC dimension in supervised
learning.

▶ Few computational results. When can
we design computationally efficient
algorithms?

This Talk

▶ Introduce fundamental and natural setting:
Linear Function Approximation.
▶ Boundary of necessary vs sufficient

▶ Sample efficiency under Linear Function
Approximation
▶ Unifying Sufficient Structural

Assumption for Sample Efficiency
[DKLLMSW ’21]

▶ Computational World: Different from
Statistical World under Linear Function
Approximation [KLLM ’22]
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Overview

Part 0: Natural Assumptions
RL with Linear Function Approximation

Part 1: Why is RL hard?
Baseline: Regression Chaining

Part 2: Sample Efficiency
Algorithmic Ideas in Theory

Part 3: Computational Efficiency
Different from sample efficiency
Hard Instances
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Part 0: RL with Linear Function Approximation
natural assumptions in RL

11



Linear Function Approximation
▶ Fundamental in theory: A lot of algorithms try to learn optimal value functions

V∗(s) = max
π

E

[ H∑
t=0

Rt | s0 = s, π
]
, Q∗(s, a) = max

π
E

[ H∑
t=0

Rt | s0 = s,A0 = a, π
]

▶ Fundamental in practice: A lot of model free algorithms used in practice try to learn the optimal value
functions
▶ Trains a neural network to predict optimal V∗ and Q∗ functions

(s, a) V∗(s),Q∗(s, a)

Representation Learning
Learn features +

Learning Linear Functions
Learn optimal value functions linear in these features
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Linear Function Approximation: Linear Q⋆&V⋆

▶ Basic idea: Assume our neural networks learned “good” representations (features) ϕ(s, a), ψ(s) ∈ Rd (where
d≪ #states,#actions).

Linear Function Approximation
▶ Linear Q∗: There exists unknown w⋆ ∈ Rd and known features ϕ : S× A→ Rd s.t.

Q⋆(s, a) = ⟨w⋆, ϕ(s, a)⟩

▶ Linear V∗: There exists unknown θ⋆ ∈ Rd and known features ψ : S→ Rd s.t.

V⋆(s) = ⟨θ⋆, ψ(s)⟩

▶ Lots of interesting variants: Linear Q∗, Linear V∗, Linear Q∗&V∗ (reachable states).

▶ Weak Assumption. Implied by a lot of previous assumptions: Linear MDP, Linear Bellman Complete, …
▶ Counterpart in supervised learning is well understood

▶ What’s efficiently possible in RL compared to supervised learning.
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Part 1: Why is RL hard?
Connections to Bandits and Trees
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Why is RL hard: From Bandits Theory
s

x y z

ϕ(s, 1)

ϕ(x, 1) ϕ(x, 3)
ϕ(s, 2)

ϕ(s, 3)

▶ Recall Linear Q∗ means
Q∗(s, a) = ⟨w∗, ϕ(s, a)⟩ where ϕ(s, a) ∈ Rd .

▶ Approach: Learn the linear function Q∗(s, a) uniformally over all state action pairs!
▶ Need something stronger than regression

to learn w∗ from estimates of the value function on different state action pairs {Q̂∗(s, a)}s,a
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Why is RL hard: From Bandits Theory

▶ Proposition (John ’48)
There exists O(d) state-action pairs {(s1, a1), (s2, a2), . . . , (sd, ad)} such that
every ϕ(s, a) can be written in terms of ϕ(s1, a1), . . . , ϕ(sd, ad) with small coefficients.

ϕ(s, a) =
∑

i
αiϕ(si, ai) and ∥α∥2 ≤

√
d

▶ This implies Q∗(s, a) can be written in terms of {Q∗(si, ai)} with small coefficients

ϕ(s, a) =
∑

i
αiϕ(si, ai) =⇒ Q∗(s, a) =

∑
i
αiQ∗(si, ai)

▶ Using good estimates Q̂(si, ai) on these “landmark” state action pairs,
we can build good estimates Q̂(s, a) =

∑
i αiQ̂(si, ai) for any state-action pair (s, a).

▶ How much does the error grow?

|Q∗(s, a)− Q̂(s, a)| ≤ ∥α∥1 maxi
|Q∗(si, ai)− Q̂(si, ai)| ≤ O(d)max

i
|Q∗(si, ai)− Q̂(si, ai)|
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Attempt 1: Regression Chaining
We now have a different “landmark” set (John’s basis) Jh for every level h.

▶ Error for John’s basis at last layer:

max
(s,a)∈JH

∣∣∣Q∗(s, a)− Q̂(s, a)
∣∣∣ ≤ O(ϵ)

▶ Error for every (sH, a) at last level:∣∣∣Q∗(sH, a)− Q̂(sH, a)
∣∣∣ ≤ ∥α∥1ϵ ≤ O(dϵ)

▶ Error for John’s basis at second last layer:

max
(s,a)∈JH−1

∣∣∣Q∗(s, a)− Q̂(s, a)
∣∣∣ ≤ EsH∼T(s,a)

[∣∣∣V∗(sH)− V̂(sH)
∣∣∣] ≤ O(dϵ)

▶ Error for every (sH−1, a) at second last level:

|Q∗(sH−1, a)− Q̂(sH−1, a)| ≤ ∥α∥1dϵ ≤ O(d2ϵ)

Issue: The error grows by a factor of d every level.
Leading to dH sample and computational complexity. Can be improved to d

√
H.
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Part II: Sample Efficiency
Algorithmic Ideas

Goal: Improve upon the O(d
√

H) sample complexity of regression chaining.
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What more can we do?
Q: We do not observe Q∗ and V∗. Then, what do we observe?
A: Local Consistency!

Q∗(s, a) = Er∼R(s,a)[r] + Es′∼T(s,a)[V∗(s′)] (A)
V∗(s) = max

a
Q∗(s, a) (B)

▶ Recall Linear Q∗ and Linear V∗ means

Q∗(s, a) = ⟨w∗, ϕ(s, a)⟩ and V∗(s) = ⟨θ∗, ψ(s)⟩

▶ Equation (A) is a Linear Constraint
Equation (A) can be enforced by estimating “consistency feature” vector [ϕ(s, a),−ET(ψ(s′)),−ER(r)].

⟨w∗, ϕ(s, a)⟩ − ⟨1,Er∼R(s,a)[r]⟩ − ⟨θ∗,Es′∼T(s,a)[ψ(s′)]⟩ = 0

⟨[w∗, θ∗, 1], [ϕ(s, a),−ET(ψ(s′)),−ER(r)]⟩ = 0

We should create John’s basis for these “consistency feature” vectors.

▶ Enforcing Equation (B) is free!.
Enforcing Equation (B) does *not* require any interaction with transition and rewards function.

V∗(s) = ⟨θ∗, ψ(s)⟩ = max
a
⟨w∗, ϕ(s, a)⟩ = max

a
Q∗(s, a)
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Polynomial Sample Complexity under Linear Function Approximation

Theorem (Du, Kakade, Lee, Lovett, M., Sun, Wang ’21)
▶ Bilinear class: a special class of MDPs.

set of MDPs where (a generalization of) Equation (A) is a low degree polynomial.
▶ All “named” models are bilinear classes.
▶ Sample efficient algorithm (poly(d,H)) for all bilinear classes.

▶ Linear Q∗&V∗ is a bilinear class.
▶ Need only poly(d,H) samples when both Q∗ and V∗ are linear.

▶ For other variants, enforce Equation (A) by multiplying the constraint for all actions.[Weisz, Amortila,
Janzer, Abbasi-Yadkori, Jiang, Szepesvári ’21]

▶ Phase transition happens when only Q∗ or V∗ is linear.
(series of works [Weisz, Amortila, Szepesvári ‘21; …; Wang, Wang, Kakade ‘21])

|A| = 2 |A| = Ω(d1/4) |A| = exp(d)
linear Q∗ and V∗ 3 3 3

linear Q∗ and V∗ (reachable) 3 7 7

linear Q∗ 3 7 7

linear V∗ 3 7 7
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Simple Global Algorithm: BiLin-UCB
▶ First we remove candidates which don’t satisfy Equation (B)

so only need to satisfy Equation (A).

Algorithm 1: BiLin-UCB
1 Parameters number of iterations T, batch size m, confidence radius R
2 Initialize constraint σ : Rd × Rd → R as σ(w, θ) = 0
3 for iteration t = 0, 1, . . . ,T− 1 do
4 Find the optimistic (wt, θt):

(wt, θt) := argmax
(w,θ)

⟨θ, ψ(s0)⟩ subject to σ2(w, θ) ≤ R

5 Sample m trajectories using πt and create a batch dataset of size mH:
D = {(rh, sh, ah, sh+1) ∈ trajectories}

6 Update the constraint σ2(·)

σ2(w, θ)← σ2(w, θ) + ED
[
⟨w, ϕ(sh, ah)⟩ − rh − ⟨θ, ψ(sh+1)⟩

]2
7 return: the best πt found until now.
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Part III: Computational Complexity of RL
Hard Instances

Goal: Improve upon the O(d
√

H) computational complexity of regression chaining.
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Global vs Local Algorithm

▶ A global algorithm exists! Computationally inefficient.
▶ Regression Chaining (Du, Lee, M., Wang ’19) Takes exp(H) time. Can be improved to exp(

√
H).

▶ BiLin-UCB (Du, Kakade, Lee, Lovett, M., Sun, Wang ’21): Loops over all linear functions!
▶ TensorPlan (Weisz, Szepesvari, Gyorgy ’21) Takes exp(d) time.

▶ Open Question: Can we design polynomial time algorithms under linear function approximation?
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Computational-Statistical Gap

▶ Theorem (Kane, Liu, Lovett, M., 2022)
Unless NP = RP, no polynomial time algorithm exists for RL with linear function approximation.

|A| = 2 |A| = Ω(d1/4) |A| = exp(d)
linear Q∗ and V∗ 7 7 7

linear Q∗ and V∗ (reachable) 7 7 7

linear Q∗ 7 7 7

linear V∗ 7 7 7

▶ Hardness for all the variants of linear function approximation
even in the easiest case: deterministic transition + 2 actions.

▶ Unlike classical theory, computational and statistical worlds are really different.
▶ Reinforcement vs Supervised Learning.

▶ Learning features which allow target functions to be linear are not enough.
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Reduction: 3-SAT to MDP with Linear Q∗ and V∗

Complexity problem 3-SAT
Input: a CNF formula φ with v variables, O(v) clauses.
Goal: is φ satisfiable?

▶ CNF Formula: (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄3 ∨ x4)
▶ Satisfying Assignment: (1, 1,−1, 1)

3-SAT Input

(CNF Formula)

RL Input

(MDP with Linear Q∗ and V∗)

3-SAT Solution

(Satisfying Assignment)

RL Solution

(Near Optimal Policy)

Reduction

ARL

Reduction

ASAT
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Hard Instance
▶ We need to embed a hard problem, 3SAT, in RL.
▶ Let’s start with non-constant number of actions.

(−1,−1,−1, . . . ,−1)(−1,−1,−1, . . . ,−1)

(−1,−1,−1, . . . , 1)

xv

(−1,−1, 1, . . . ,−1)x3

(−1, 1,−1, . . . ,−1)x2

(1,−1,−1, . . . ,−1)

x1

...

▶ Every state is some assignment to 3SAT variables.
▶ v actions correspond to flipping the assignment for each of the v variables.
▶ Reward = 1 only when you reach some fixed satisfying assignment w∗. Otherwise 0.
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Hard Instance: Issues

(−1,−1,−1, . . . ,−1)

(−1,−1, 1, . . . ,−1)

x3

x2
(1,−1,−1,−1, 1, . . . ,−1)

x5

(1,−1, 1, . . . ,−1)
x3

(1, 1,−1, . . . ,−1)
x2

x1

▶ For horizon H = v, Solving RL =⇒ solving 3SAT.

▶ Issue 1: We can not write Q∗ or V∗ linearly.
Value of assignment w at level l (here D(w,w∗) is hamming distance between w and w∗)

V∗(w, l) =
{
1 if D(w,w∗) < H− l
0 otherwise

▶ Issue 2: The rewards are deterministic.
There exists polynomial time algorithms when rewards are deterministic (Gaussian Elimination).
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Hard Instance: Issues
▶ Let’s add randomness. Bernoulli reward.

Expected reward on reaching w at level l

E[R(w, l)] =
{
1− l+D(w,w∗)

H+v if l = H or w = w∗

0 otherwise

▶ We can show in this case the optimal policy is to go towards w∗ as fast as possible.
Therefore, value of assignment w at level l

V∗(w, l) = 1−
l + D(w,w∗)

H + v

Since hamming distance is linear in w and w∗, V∗ is also linear in w and w∗

▶ New issue: We leak a lot of reward information at the last layer.
Can not simulate D(w,w∗) efficiently.
This can be fixed but a bit technical.
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Hard Instance: Issues
▶ Expected reward on reaching w at level l

E[R(w, l)] =
{(

1− l+D(w,w∗)
H+v

)r
if l = H or w = w∗

0 otherwise

▶ Same as before the optimal policy is to go towards w∗ as fast as possible.
Therefore, value of assignment w at level l

V∗(w, l) =
(
1−

l + D(w,w∗)

H + v

)r

V∗ is a polynomial of degree r in w and w∗.
In terms of its monomials, V∗ is linear in d = vr dimensional features.
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Hard Instance: Issues
▶ Consider a polynomial time algorithm for RL.

Since, our dimension d and horizon H are both d = H = vr,
the algorithm runs in poly(vr) time.

▶ But the expected reward at the last layer is at most(
1−

H
H + v

)r
∈ O(v−r2 )

▶ Therefore, any polytime algorithm with high probability only sees 0 at the last layer.

▶ We can simulate this algorithm efficiently by always returning 0 on the last layer
(and only slightly decreasing the success probability)!
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Hard Instance: v actions to 3 actions
▶ There always exists a variable we can flip to get closer to the optimal solution.

▶ The three actions available are the variables in the unsatisfied clause
(one such clause exists, because current assignment is not satisfying assignment.)

Consider the following CNF formula
(x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x̄3) ∧ (x̄3 ∨ x̄3 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x1).

(−1,−1,−1,−1)
x1 ∨ x2 ∨ x3

(−1,−1,−1,−1)
x1 ∨ x2 ∨ x3

(−1,−1,−1,−1)

(−1,−1, 1,−1)

x3

x2

(1,−1,−1,−1)

x1

x1 ∨ x2 ∨ x3
(−1,−1,−1,−1)

x1 ∨ x2 ∨ x̄3
(−1,−1, 1,−1)

x3

x2

x̄1 ∨ x2 ∨ x3
(1,−1,−1,−1)

x1

x1 ∨ x2 ∨ x3
(−1,−1,−1,−1)

(−1,−1, 1,−1)

x3

x2

x̄1 ∨ x2 ∨ x3
(1,−1,−1,−1)

(1,−1, 1,−1)

x3

x1

(1, 1,−1,−1)

x2

x1
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Hard Instance: 3 actions to 2 actions

x1 ∨ x2 ∨ x3
(−1,−1,−1, · · · )

l = 1

(−1,−1, 1, · · · )
l = 2

x3

(−1,−1,−1, · · · )
l = 1

(−1, 1,−1, · · · )
l = 2

x2

(1,−1,−1, · · · )
l = 2

x1
[x1, x2]

▶ We replace the three actions by 2 actions, grouping any two actions together.
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What have we learned?
▶ Computational-Statistical Gap in RL with Linear Function Approximation.

▶ Simple sample efficient algorithm works for all known “named” models.
▶ Novel construction exposing computational hardness.

▶ Reinforcement vs Supervised Learning.
▶ Learning features which allow target functions to be linear are not enough.
▶ We need more assumptions for RL.

▶ Tight characterization of computational complexity of RL.
▶ Best Upper Bounds: Takes exp(

√
H log d) or exp(d) time.

▶ Best Lower Bound: No polynomial time algorithm exists.
▶ Can we close this gap? (maybe there exist a quasi-polynomial time algorithm)
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Thanks!

Joint work with:

Simon Du Sham Kakade Daniel Kane Jason Lee

Sihan Liu Shachar Lovett Wen Sun Ruosong Wang
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Proof intuition
▶ The proof follows from this lemma about existence of high quality policy.

Lemma (Existence of high quality policy)
Suppose we run the algorithm for T ≈ d iterations. Then, there exists t ∈ [T] such that the following is true for
hypothesis (wt, θt):

V⋆ − Vπt (s0) ≤
poly(d,H)
√m

1



Bilinear Regret Lemma
▶ Bilinear regret assumption and Optimism give an upper bound for sub-optimality.

▶ Define Wt as the collective parameters
Wt = [wt,−θt]

▶ Define Xt,h as the expected “consistency feature” vector seen at level h under policy πt.

Xt,h = Eπt [ϕ(sh, ah), ψ(sh+1)]

Lemma (Bilinear Regret Lemma)
The following holds for all t ∈ [T] w.h.p.:

V⋆(s0)− Vπt (s0) ≤
H−1∑
h=0

∣∣⟨Wt −W∗
t ,Xt,h⟩

∣∣ .
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Proof of Bilinear Regret Lemma
Proof:

V⋆(s0)− Vπt (s0)

≤ ⟨θt, ψ(s0)⟩ − Vπt (s0) (optimism)
= ⟨wt, ϕ(s0, a0)⟩ − Vπt (s0) (Equation (B))

= ⟨wt, ϕ(s0, a0)⟩ − E

[ H∑
h=0

rh

]
(definition of Vπt )

=

H−1∑
h=0

Eπt [⟨wt, ϕ(sh, ah)⟩ − rh − ⟨wt, ϕ(sh+1, ah+1)⟩] (telescoping sum)

=

H−1∑
h=0

Eπt [⟨wt, ϕ(sh, ah)⟩ − rh − ⟨θt, ψ(sh+1)⟩] (Equation (B))

=

H−1∑
h=0

∣∣⟨Wt −W∗,Xt,h⟩
∣∣ (by definition)
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Proof of main lemma
▶ Bilinear regret assumption and Optimism give an upper bound on sub-optimality for all iterations t.

V⋆ − Vπt (s0) ≤
H−1∑
h=0

∣∣⟨Wt −W∗,Xt,h⟩
∣∣ .

▶ Our goal then is to show existence of iteration t ∈ [T] such that

H−1∑
h=0

∣∣⟨Wt −W∗,Xt,h⟩
∣∣ is small

▶ To that end, we will show existence of iteration t ∈ [T] such that for Σ0;h = λI and
Σt;h = Σ0;h +

∑t−1
i=0 Xi,hX⊤

i,h, the following is true

∥Wt −W∗∥Σt;h

∥∥Xt,h
∥∥
Σ−1

t;h
is small for all h ∈ [H]
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∥Wt −W∗∥Σt;h

∥∥Xt,h
∥∥
Σ−1

t;h
is small for all h ∈ [H]

▶ From our optimization constraint and uniform convergence, we get that for all time t

∥Wt −W∗∥Σt;h
≤

poly(d,H)
√m︸ ︷︷ ︸

≈d×SL generalization error

for all h ∈ [H]

▶ From Elliptical Potential Lemma, there exists t ∈ [T] such that∥∥Xt,h
∥∥
Σ−1

t;h
= O(1) for all h ∈ [H]

Basically, we can write Xt,h in terms of {Xt−1,h, . . . ,X1,h,X0,h} with small coefficients.
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