Gaurav Mahajan



Selected Publications

  1. Learning Hidden Markov Models Using Conditional Samples
    with S.M. Kakade, A. Krishnamurthy and C. Zhang
    COLT 2023
    arxiv

  2. Computational-Statistical Gaps in Reinforcement Learning
    with D. Kane, S. Lui and S. Lovett
    COLT 2022
    talk | arxiv | tweet

  3. Optimality and Approximation with Policy Gradient Methods in Markov Decision Processes
    with A. Agarwal, S. M. Kakade and J. D. Lee
    COLT 2020
    colt | arxiv

All Publications

Google Scholar
  1. Improved classical shadows from local symmetries in the Schur basis
    with D. Grier and S. Liu
    Preprint
    arxiv

  2. Do PAC-Learners Learn the Marginal Distribution?
    with M. Hopkins, D. Kane and S. Lovett
    Preprint
    arxiv

  3. Learning Hidden Markov Models Using Conditional Samples
    with S.M. Kakade, A. Krishnamurthy and C. Zhang
    COLT 2023
    arxiv

  4. Exponential Hardness of Reinforcement Learning with Linear Function Approximation
    with D. Kane, S. Liu, S. Lovett, C. Szepesvari and G. Weisz
    COLT 2023
    arxiv

  5. Computational-Statistical Gaps in Reinforcement Learning
    with D. Kane, S. Lui and S. Lovett
    COLT 2022
    arxiv | tweet

  6. Realizable Learning is All You Need
    with M. Hopkins, D. Kane and S. Lovett
    COLT 2022
    arxiv | tweet

  7. Point Location and Active Learning: Learning Halfspaces Almost Optimally
    with M. Hopkins, D. Kane and S. Lovett
    FOCS 2020
    focs | arxiv

  8. Optimality and Approximation with Policy Gradient Methods in Markov Decision Processes
    with A. Agarwal, S. M. Kakade and J. D. Lee
    COLT 2020
    colt | arxiv

  9. Noise-tolerant, Reliable Active Classification with Comparison Queries
    with M. Hopkins, D. Kane and S. Lovett
    COLT 2020
    arxiv

  10. Learning What To Remember
    with R. Bhattacharjee
    ALT 2022
    arxiv

  11. Convergence of online k-means
    with S. Dasgupta and G. So
    AISTATS 2022
    arxiv

  12. Bilinear Classes: A Structural Framework for Provable Generalization in RL
    with S. S. Du, S. M. Kakade, J. D. Lee, S. Lovett, W. Sun and R. Wang
    ICML 2021 (Long Talk)
    icml | arxiv | tweet

  13. On the Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift
    with A. Agarwal, S. M. Kakade and J. D. Lee
    JMLR 2021
    jmlr | arxiv

  14. Q-learning with Function Approximation in Deterministic Systems
    with S. S. Du, J. D. Lee and R. Wang
    NeurIPS 2020
    arxiv

Talks

  1. Computational-Statistical Gaps in Reinforcement Learning: (talk) (slides)
    Microsoft Research New York Seminar
    Yale Foundations of Data Science Seminar
    EnCORE Fall Retreat
    TTIC Machine Learning Seminar Series
    UCLA Big Data and Machine Learning weekly seminar
    Brown Robotics Group (George Konidaris's group)
    Berkeley RL Reading Group (Jiantao Jiao's group)

  2. Equivalence between Realizable and Agnostic Learning: (slides)
    Cornell Theory Seminar
    MSR New York ML Reading Group

  3. Theory of Generalization in Reinforcement Learning: (slides)
    RL Theory Seminar
    UCSD AI Seminar
    UCSD Theory Seminar