Selected Publications
-
Learning Hidden Markov Models Using Conditional Samples
with S.M. Kakade, A. Krishnamurthy and C. Zhang
COLT 2023
arxiv -
Computational-Statistical Gaps in Reinforcement Learning
with D. Kane, S. Lui and S. Lovett
COLT 2022
talk | arxiv | tweet -
Optimality and Approximation with Policy Gradient Methods in Markov Decision Processes
with A. Agarwal, S. M. Kakade and J. D. Lee
COLT 2020
colt | arxiv
All Publications
Google Scholar-
Improved classical shadows from local symmetries in the Schur basis
with D. Grier and S. Liu
Preprint
arxiv -
Do PAC-Learners Learn the Marginal Distribution?
with M. Hopkins, D. Kane and S. Lovett
Preprint
arxiv -
Learning Hidden Markov Models Using Conditional Samples
with S.M. Kakade, A. Krishnamurthy and C. Zhang
COLT 2023
arxiv -
Exponential Hardness of Reinforcement Learning with Linear Function Approximation
with D. Kane, S. Liu, S. Lovett, C. Szepesvari and G. Weisz
COLT 2023
arxiv -
Computational-Statistical Gaps in Reinforcement Learning
with D. Kane, S. Lui and S. Lovett
COLT 2022
arxiv | tweet -
Realizable Learning is All You Need
with M. Hopkins, D. Kane and S. Lovett
COLT 2022
arxiv | tweet -
Point Location and Active Learning: Learning Halfspaces Almost Optimally
with M. Hopkins, D. Kane and S. Lovett
FOCS 2020
focs | arxiv -
Optimality and Approximation with Policy Gradient Methods in Markov Decision Processes
with A. Agarwal, S. M. Kakade and J. D. Lee
COLT 2020
colt | arxiv -
Noise-tolerant, Reliable Active Classification with Comparison Queries
with M. Hopkins, D. Kane and S. Lovett
COLT 2020
arxiv -
Learning What To Remember
with R. Bhattacharjee
ALT 2022
arxiv -
Convergence of online k-means
with S. Dasgupta and G. So
AISTATS 2022
arxiv -
Bilinear Classes: A Structural Framework for Provable Generalization in RL
with S. S. Du, S. M. Kakade, J. D. Lee, S. Lovett, W. Sun and R. Wang
ICML 2021 (Long Talk)
icml | arxiv | tweet -
On the Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift
with A. Agarwal, S. M. Kakade and J. D. Lee
JMLR 2021
jmlr | arxiv -
Q-learning with Function Approximation in Deterministic Systems
with S. S. Du, J. D. Lee and R. Wang
NeurIPS 2020
arxiv
Talks
-
Computational-Statistical Gaps in Reinforcement Learning: (talk) (slides)
Microsoft Research New York Seminar
Yale Foundations of Data Science Seminar
EnCORE Fall Retreat
TTIC Machine Learning Seminar Series
UCLA Big Data and Machine Learning weekly seminar
Brown Robotics Group (George Konidaris's group)
Berkeley RL Reading Group (Jiantao Jiao's group) -
Equivalence between Realizable and Agnostic Learning: (slides)
Cornell Theory Seminar
MSR New York ML Reading Group -
Theory of Generalization in Reinforcement Learning: (slides)
RL Theory Seminar
UCSD AI Seminar
UCSD Theory Seminar